Some 70 members from various parts of Europe and the USA met in Zurich for the 7th congress of the EAMHMS from 8th - 10th September 1994. The host, the Institute and Museum of the History of Medical Sciences, proposed the topic 'Medical Objects and their Writings'. A scientific studies committee consisting of Beat Rüttimann, Christoph Mörgeli (Zürich), Christa Habrich (Ingolstadt), Urs Boschung (Bern) and Jean-Jacques Dreifuss (Geneva) had reviewed the suggestions for talks on the topic beforehand and chosen a suitable selection. On the 8th September the congress was opened with the usual members’ meeting and the welcome speech by Dr. Christa Habrich, the director of the German Museum of the History of Medical Sciences in Ingolstadt and also president of the EAMHMS. Thereafter Beat Rüttimann introduced the topic by presenting a selection of some of the objects from the collection of the Museum for the History of Medical Sciences in Zürich. Then Christoph Mörgeli reminded the participants that the museum had developed from the modest beginnings as the private collection of the general practitioner, Gustav Wehrli to the world’s largest University collection in its field that it is today. This introduction was followed by a reception offered by the University administration, and the guests were invited to visit the Museum of the History of Medical Sciences and the exhibition of rare books that Heidi Seger had chosen from the Institute of the History of Medical Sciences for this occasion.

The 9th September provided the participants of the congress with a demanding, but rewarding programme with eleven talks pertaining to the main topic. In the afternoon, the guests visited the collection of moulages at the University Hospital of Zurich, where Prof. Gunter Burg, director of the department of Dermatology of the University Clinic of Zürich and the trustee, Mrs. Elsbeth Stoiber, gave them a warm welcome. That day the participants were lucky enough to have particularly beautiful weather for their trip on Lake Zürich which they undertook on a special ship after having visited the moulages. They arrived in Rapperswil just in time to take up their positions on Castle Hill in order to watch the sun go down.

The congress participants spent a most pleasant evening at the Hotel Schwanen at a banquet in honour of the 10th anniversary of the EAMHMS, enjoying the performances and the dancing which kept them entertained until past midnight.

On the 10th September five speakers talked about various European Museums and collections. After the lunch break the guests were taken on a bus trip over the Bözberg Pass to the centre of Basle’s Old City. The curator of the Museum of the History of Pharmacy, Michael Kessler, introduced the group to this museum that is located in the Totengässlein. The museum experts were obviously impressed by the rich collection of this unique house. In the evening, the EAMHMS took a stroll across the middle Rheinbridge which took them up to the F. Hoffmann-La Roche Company where
Martin Schneider and Regine Pötzsch from the Editiones Roche had organized the farewell dinner to conclude the congress officially. It was unanimously agreed that, thanks to the high standard of the scientific contributions, a varied range of entertainment, fortunate weather at the decisive moments and the friendly, enthusiastic guests, the congress had been a most satisfactory event. The 8th congress in Göteborg (Sweden) in September 1996 will be dedicated to the topic of ‘Hygiene in Medical Practice and Nursing’. For his occasion, the focus will naturally also be on other aspects of the history of medicine. The contributions at the Zürich congress and also the posters that were handed in will be published in the 'Actes' of the EAMHMS.

Christoph Mörgeli

ALAIN BRIEUX
48, rue Jacob, 75006 Paris
TÉL. (1) 42 60 21 98
HISTOIRE DES SCIENCES
ET DE LA MÉDECINE
LIVRES ANCIENS – AUTOGRAPHES

INSTRUMENTS SCIENTIFIQUES ANCIENS
européens et islamiques

INSTRUMENTS ANCIENS DE MÉDECINE ET DE CHIRURGIE

ACHAT - VENTE - EXPERTISES - PARTAGES

Nouvelles des Musées et Collections/News of Museums and Collections

Angleterre, Leeds
You may have noticed that a lot of countries have changed their telephone numbers and so did Great Britain.
The new telephone & fax numbers as from 16 april 1995 for the Thackray Medical Museum in Leeds are:

Tel.: 0113 244 4343
Fax.: 0113 247 0219

Allemagne, Bremen

Krankenhaus-Museum, Bremen
To the Krankenhaus-Museum belongs a permanent exhibition of 400 sq. meters. It documents the history of psychiatry in Bremen from the beginning to 1945. The exhibits visualize the daily situation in a psychiactrical clinic around 1900 and allow you to look into a world which was secluded from society. A special part of the exhibition gives an idea about psychiatry during the period when the National Socialists were in power in Germany.

Krankenhaus-Museum
Züricher Strasse 40
28325 Bremen
Tel.: 0421-4081757/4081781
Fax.: 0421-4081490

Open:
On Wednesday, Friday, Saturday and Sunday 15.00 -18.00h
On Thursday 15.00-20.00h

Düren

Museum und Archive zur Geschichte der Urologie
A new museum for the History of Urology will be open to the public in the end of 1995

Museum und Archiv zur Geschichte der Urologie
Klinik für Urologie und Kinder Urologie
Roonstrasse 30
D-52351 Düren
Tel.: 02421 301516
Fax.: 02421 301387
Ingolstadt

The telephone number of the Deutsches Medizinhistorisches Museum has changed:
The new number is: 0841 305 1860

Jena

Optisches Museum, Jena

The Optisches Museum gives us an idea about the developments in optics in the last 300 years.
The following subjects get their turn in the permanent exhibition:

- Optical prints from the eighteenth century
- Camera Obscura
- Early Photography
- Telescopes
- Heliometers
- Sun-dials
- Steroplanigraphs
- Microscopes (The workshop of Carl Zeiss)
- Spectacles
- Ophthalmology

Optisches Museum der Ernst-Abbe-Stiftung
Carl-Zeiss-Platz 12
D-07743 Jena
Tel.: 03641 551 06/551 09
Fax.: 03641 223 83
Open:
Tuesday - Friday 10.00-17.00h
Saturday 13.00-16.30h
Sunday 9.30-13.00h

France, Paris

Le Musée Pierre Marly des Lunettes et Lorgnettes

Issu d’un milieu modeste, Pierre Marly a toujours eu la conviction que l’homme doit lutter pour réussir.
Après avoir été apprenti chez un photographe, ouvrier-monteur au rayon optique de la Samaritaine, chef d’atelier puis directeur technique et des approvisionnements chez les Frères Lissac, Pierre Marly décide de réaliser ses propres idées de montures. Son but est de parvenir au summum de la qualité, du service et du luxe. Selon lui, il est nécessaire de voir les lunettes accéder à la dignité d’accessoire de la personnalité.
Lorsque en 1948 le jeune ouvrier obtient son diplôme d’opticien, il devient ‘Le Couturier des lunettes’. C’est chez lui que se dirigent alors les chefs d’État, les hommes publics ou les vedettes de spectacle qui désirent un ‘regard’ personnalisé. Hormis sa passion pour la création, Pierre Marly est également collectionneur. Passionné par tout ce qui a trait à l’optique, il a, depuis 40 ans, rassemblé près de 3000 pièces au sein de son musée: Le Musée Pierre Marly des Lunettes et Lorgnettes, dont est tiré son ouvrage: Pierre Marly, Lunettes et Lorgnettes (aux Editions Hoëbeke).
Dans ce musée sont exposés notamment, livres et traités anciens, gravures rares, documents curieux et inédits, ainsi que des lunettes, lorgnettes et instruments d’optique.
Le musée est ouvert dans son nouveau cadre:

380 rue Saint-Honoré (angle de la Rue Cambon),
75001 - Paris.

Pays-Bas, Leiden, Utrecht

New telephone numbers for Dutch institutions:
Museum Boerhaave, Leiden:
Tel.: 0715 214 224
Fax.: 0715 120 344
Universiteits Museum, Utrecht:
Tel.: 0302 538 008
Fax.: 0302 735 020

Chers Lecteurs,

Dear Reader,
For an editor of a Bulletin it is very hard to deliver his work in time when there is no information to print.
So I would like to ask you all to send me the information you may be able to obtain about exhibitions in your country, information about your own collection or about other collections in your country. Without your help it is impossible to print our Bulletin.

The deadline for information to be printed in the next number of the Bulletin, which will be published in July 1996, is the 15th of June.

Your editor, Kees Storm Grooss
New project in Museum Boerhaave

The restauration of papier-maché models made by Dr. Auzoux

In cooperation with a group of experts specialized in paper restauration, Museum Boerhaave in Leiden has started a new international project on the restauration of papier-maché models made in the nineteenth century by Dr. Auzoux. Although several attempts have already been made to tackle this problem, the results were not very satisfying. Therefore Museum Boerhaave has started this new project.

The approach in this project is an international one and everybody, who is in charge of, or interested in papier-maché models, is hereby invited to react on this invitation to join this project.

More information about this project will be sent to you in due time, if you react on this invitation and write to:

Drs. K. S. Grooss
Museum Boerhaave
PO-Box 11280
2301 EJ Leiden, the Netherlands

Allemagne, Erlangen

Dem publico zu dienen
Anatomie und Botanik im reichsstädtischen Nürnberg
8 November - 10 December 1995

Christoph Jacob Trew (1695-1769), a successful and popular physician in Nuremberg, ranks among the eminent private collectors of the 18th century. In his "Museum Trewianum" he gathered about 34,000 printed volumes, more than 19,000 letters, and a large number of medical and botanical drawings. In addition he collected anatomical and pathological specimens and instruments, seeds, flowers and portraits. His main interests concentrated on anatomical and botanical documents. Primarily he did not build up his collection for private pleasure. His intention was to work with it scientifically and to publish the highlights of his stocks. "Dem publico zu dienen ..." (to serve the public) was a phrase which he often used in his letters and publications to describe the motives of his scientific ambitions. While most of the three-dimensional objects did not survive the course of time, the vast majority of his textual and pictural items - dating from the 15th to the 18th century - came into possession of the library of the University of Erlangen-Nürnberg. These stocks present deep insights into the social and learned medical world of early modern times. Besides, it opens the door to discovering how a medical practitioner in the early Enlightenment took part in contemporary research.

The Institute for the History of Medicine and the Library of the University of Erlangen-Nürnberg will present extraordinary pieces of the Erlangen Trew-collection in this special exhibition.

There is a catalogue available: (DM 38,-)

Universitätsbibliothek Erlangen
Schulstrasse 1a
Erlangen
Open:
Monday - Friday 10.00-18.00h
Saturday and Sunday 10.00-16.00h
Guided tours on Tuesday and Thursday at 15.00h
Tel. for information and guided tours: 09131 852 150 and 852 158
Fax.: 09131 859 309

Ingolstadt

Deutsches Medizinhistorisches Museum:

Louis Lewin - Leben und Werk
25 July - 15 October 1995
Louis Lewin (1850-1929) was one of the famous toxicologists in Germany. He was also interested in the history of poisons and wrote the classic work on poison in world history (Die Gifte in der Weltgeschichte). A booklet with his biography and about his work in Berlin is available (DM 15.-)

Ex Libris für Ärzte
11 November 1995 - 7 January 1996

Vom 16. Jahrhundert bis zur Gegenwart. Sammlung Dr. Gernot Blum. The important collection of Ex Libris of many European countries shows all kinds of cultural aspects of medical motifs. Catalogue with about 200, partly colour, pictures is available (DM 32,-)

Deutsches Medizin Historisches Museum
Anatomiestrasse 18-20
D-85049 Ingolstadt
Open: Tuesday to Sunday 10.00-12.00h and 14.00-17.00h
Tel.: 0841 305 1860

Würzburg
100 Jahre Röntgenstrahlen
Universität Würzburg
14 February - 19 November 1995

Julius Maximilians-Universität Würzburg
Martin von Wagner-Museum
Residenz Südfügel
Open: Tuesday - Sunday 10.00-18.00h
Guided tours on request
Catalogue available (DM 28,-)
Tel.: 0931 515 73/ Fax: 0931 178 40

France, Paris
De l’elixir au génie génétique
Deux siècles de sciences pharmaceutiques hospitalières
Musée de l’Assistance Publique - Hôpitaux de Paris
47, Quai de la Tournelle - 75005 Paris
30 septembre 1995 - 6 janvier 1996
Très beau catalogue illustré : 120 FF

La verre et la médecine
Le Musée d’Histoire de la Médecine organise en octobre 1996 une exposition ‘Le verre et la médecine’. Si vous avez des objets, des peintures concernant le verre, vous pouvez le faire savoir au Musée (12, rue de l’Ecole de Médecine, 75006 Paris, France - Fax: 33 1 40 46 18 92).

Italie, Milan
Paolo Pini (1875-1945)

Museo d’arte Paolo Pini
Via Ippocrate 45 - 20161 Milano
Ouvert au public les jeudis et samedis 15.00-19.00h

Siena
L’Avventura dei Raggi X (1895-1995)
Dal radiologo ‘universale’ ... all’universo dei Raggi X
6-21 May 1995
Galleria di Palazzo Patrizi , Via di Città, 75, Siena

Pays-Bas, Leiden
Lijf en Leed (Body and Illness)
Het zieke en gezonde lichaam
14/10/1995 - 21/03/1996
The purpose of this exhibition is to give the visitor a deeper understanding about human anatomy and pathology, with the help of anatomical models and human preparations, dried as well as in liquid.
It is a exposition for children and their parents, with a low ‘horror-level’.
To understand what this means you have to come and visit this exhibition yourself.
Wilhelm Conrad Röntgen was born on March 27th, 1845 in the district town of Lennep in the ‘Bergisch Land’ (today’s Nordrhein-Westfahlen). His father Friedrich Conrad, was a wealthy merchant and cloth trader in this important textile industry town (which was to be united with Remscheid in 1929); his mother, Charlotte Constanze, born Frowei, came from Amsterdam.

In 1848 Röntgen’s parents moved with their only child to Apeldoorn in Holland, 25 kilometers to the north-east of Arnhem. After primary and secondary school Wilhelm Conrad was enrolled in the Technical School in Utrecht from where, however, he was expelled for performing a harmless practical joke. After this he attempted to continue his studies as an auditor at Utrecht University. His schoolmate Carl Thormann from Rotterdam whose family came from Bern, drew his attention to the fact that in Zürich, students without a graduation certificate were accepted at the Federal Polytechnic School.

Education in Zürich

Together with his friend Thormann, Röntgen moved to Zürich for the winter term 1865/66. Beforehand he had made inquiries - in impeccable German - of the director of the Polytechnic School about study possibilities. An eye infection prevented him from arriving at the Polytechnic School in time. The Polytechnic School agreed to waive the entrance examination for the belated student on the strength of his good report. This also saved them the trouble of preparing and correcting an additional entrance examination. Röntgen enrolled in the mechanical-technical department and he dedicated his studies to mechanical engineering with enthusiasm and interest. At the time, the Polytechnic School was unable to offer a course at doctorate level. Röntgen therefore enrolled at Zürich University after having successfully earned his diploma in mechanical engineering in 1868.

Röntgen wrote his dissertation with the professor of mechanics, Gustav Zeuner, at the Polytechnic School and handed it in with the title ‘Studies in Gases’ to the second department (natural science) of the Faculty of Philosophy of the University of Zürich. There is no reliable proof as to where Röntgen’s first dwellings in Zürich were. From
November 1866 until he left Zürich in the spring of 1870 he had his lodgings in a room in the house of the widow Barbara Grebel-Fahrner in Seilergraben No. 7.

In 1873, much to Röntgen’s delight, the Swiss Association for Medical Radiology had a commemorative tablet attached to this building where he had had his student digs. Many anecdotes of Röntgen’s jolly student life seem considerably exaggerated. Nevertheless, his collection of photographs attests to his adoration for the actress Sitterding at the Municipal Theatre of Zürich, with whom he fell passionately and unhappily in love.

Bertha Ludwig from the ‘Grunen Glas’

The public house ‘Zum Grunen Glas’ in the ‘Unteren Zäunen’ was frequented not only by theatre people but also by students and professors. Johann Ludwig from Gotha was the owner of this public house. As a student he had taken part in the liberal rebellion in Göttingen and in 1833 he was employed as a fencing teacher at the newly founded University of Zürich. Röntgen fell in love with Bertha Ludwig, the second of the innkeeper’s three daughters. Although she was six years his elder, they decided to get engaged. In 1872 Röntgen married his Zürich bride in Apeldoorn.

Academic Activity

Professor August Kundt encouraged Röntgen to concentrate on the study of physics. When the teacher at the Polytechnic School was summoned to take over as professor of experimental physics in Würzburg, Röntgen followed him as his assistant. Not having a graduation certificate he was not qualified to take his habilitation here. However, he made up for this in 1874 in Strassburg, where he now lived with Kundt. In 1875 Röntgen was given a professorship in physics at the Academy of Agriculture in Hohenheim near Stuttgart and it was only one year later that he became second physicist and senior lecturer alongside with Kundt in Strassburg. In 1879 he was granted the chair of physics in Giessen. It was here that Röntgen established his name as one of the greatest experimental physicists of his time. Especially his proof of Maxwell’s predicted theory on ‘Shifted Current’ (later called Röntgen current) in 1885 brought him international recognition. In 1888 he took over the professorship for physics at Würzburg University, where he held the rectorship in 1894 and discovered X-rays in 1895. Finally, in 1900, he was called to the University of München, where he loyally remained until his retirement from professorship in 1920.

The Discovery of X-Rays

Like many other physicists of his time, Röntgen did research work in cathode ray experiments at the physics institute in Würzburg. On October 8th, 1895, he discovered a new physical phenomenon of unknown rays (he named them X-rays) to which no one had paid any attention until then. The description of his discovery was so perspicuous and convincing that, try as they may, none of the many physicists from all over the world succeeded in adding anything new to the subject in the 10 years that followed. By January 1st, 1896 the treatise ‘Über eine neue Art von Strahlen’ had become a classic and, consisting of 17 sections, appeared in printed form. In this treatise Röntgen identifies and determines the fields - apart from medical therapy - in which X-rays would be mainly used in the future: medical diagnostics and nondestructive testing of working materials. Although he could have protected his method by taking out a patent on it, Röntgen refused the idea of making financial profit from his experiment all his life.

On January 23rd, Röntgen presented his discovery to the Medical-Physics Association in Würzburg. To conclude the presentation he took X-rays of the famous anatomist Albert von Kölliker’s hand. Kölliker, born in Zürich, turned to the enthusiastic audience and suggested that in honour of the discoverer, the X-rays be called Röntgen-rays in future.

In 1901 Röntgen was awarded the Nobel Prize for physics in Stockholm.

Immediately after the discovery there followed a wave of enthusiasm. The scholar Röntgen suddenly found that he was the centre of attraction and being a rather quiet personality, he found the upheaval about his person somewhat troublesome. He received a flood of letters from all over the world, from monarchs, statesmen, scientists and also from numerous private persons. Röntgen sent the Zürich Association of Clinical Medicine, who had gathered for a meeting in January 1896, a telegram in moving words, thanking them and reminding them that he had spent the best time of his youth in the town of Zürich. The Association of Former Polytechnicians of Zürich declared Röntgen an honorary member in 1896, as did the Swiss Association of Natural Science Research in 1897 and the Swiss Röntgen Association on the occasion of its foundation meeting in 1913. In 1896 Mr. and Mrs. Röntgen took part in the meeting of the Swiss Association of Nature Research in Zürich; Röntgen served as toastmaster for the evening entertainment.

Holidays in Switzerland

It was in 1873 that Mr. and Mrs. Röntgen spent their four-week summer holiday in the village of Pontresina in the Engadin (Grisons) for the first time. After that they returned to the hotel ‘Weisses Kreuz’ in Pontresina from 1881 to 1913 almost every year. From 1891/1908 Berta Ludwig, Berta Röntgen’s niece, accompanied the childless couple and was later adopted by them.

Röntgen enjoyed taking photographs of the Engadin landscape and went on a considerable number of mountain tours. A loyal group of friends (German and Swiss scholars) accompanied him regularly on these excursions, including the Zürich surgeon Kroenlein and the ophthalmologists Ritzmann and von Hippel.

Before the opening of the Albula railway line, the Engadin could only be reached by horsedrawn mail coaches. Those that could afford it hired a paid coachman to get to their destination and also to be taken on excursions in the region. In Emanuel Schmid from Somvrix, Mr. and Mrs. Röntgen found an exceptionally reliable coachman, in whose future they took a personal interest. Later on in life, Röntgen also came to know Schmid’s brother, the Bishop of Chur, Georg Schmid von Grüneck, fairly well.

In order to acclimatize to the high mountain region, Mr. and Mrs. Röntgen often stayed
in places of a lesser altitude, as for example in Wildhaus-Flims, on Rigi-Scheidegg or on Lenzerheide. In 1894 Röntgen visited the Engadin in the winter for the first time. During the winters between 1898-1912 the Röntgen family regularly spent their Christmas and New Year’s holidays in the ‘Sport- and Posthotel Flüela’ in Davos Village. From 1907 and 1912 they frequented the ‘Hotel Bellevue’ in Cadenabbia on Lake Como in the spring holidays, and sometimes also Vitznau or Territet, on Lake Geneva.

From the summer of 1913 to the summer of 1921, Röntgen was prevented from spending his holidays in Switzerland by political instability and war conditions. Again and again he expressed his longing for the Swiss high mountain regions, where he had spent so many a happy hour with his wife and his friends. He was eager to consolidate his contact with Switzerland and his Swiss friends, if only spiritually, by the reading of Swiss authors and frequently corresponding with his friends.

In 1921 his Swiss friends advised him that the situation in Switzerland was stable enough for him to risk a trip there once more. He spent two weeks both in Pontresina and on Lenzerheide, from where he returned home via Zürich. In Zürich he visited the members of the Ludwig family, whom he had been supporting financially for many years. During the second summer stay in 1922 he was a guest in Sils-Baselgia and once again on Lenzerheide.

Röntgen and his Time

Although Röntgen had hoped for a German victory in World War I, he spoke pessimistically of the developments of the war. In 1914, under considerable pressure on behalf of the citizens of Berlin, he signed the notorious ‘Manifest’ of the 93 German Academics at the time of the German invasion of neutral Belgium and the destruction of Leuven. In years to come, he bitterly regretted this ill-considered political act. After the war he suffered not only the loss of his shares, but also inflation. In the first rather unstable years of the Weimar Republic, Röntgen clearly took a stand against the rising anti-Semitism and National Socialism.

Bertha Röntgen’s Death - Conrad Wilhelm Röntgen’s Death

Since 1913 Röntgen’s wife had suffered from kidney stones and only by regularly taking increasing doses of medicine she was able to stand the pain. The eye-specialist Wölflin from Basel advised Pantopon combined with Morphine. Wilhelm Conrad Röntgen gave his wife the injections with the dose several times a day for six years. Bertha became addicted to Morphine. The intensive care he gave his wife was the main reason why he reduced his social contacts and he therefore slowly grew more lonely. Bertha Röntgen died on October 31st, 1919 after terrible agony.

Wilhelm Conrad Röntgen died on February 10th, 1923 at the age of 78 of a painless intestinal carcinoma from which he had suffered only two days prior to his death. His cremation took place in the Eastern Cemetery of München three days later and only a few people were present. A little later Röntgen’s ashes were transferred to the Old Cemetery in Giessen in his family vault where his parents and his wife are also buried.

Etats-Unis, Baltimore

32 Terrific Teeth
Dr. Samuel D. Harris National Museum of Dentistry
23 April 1996 -

The Dr. Samuel D. Harris National Museum of Dentistry is planning the inaugural exhibition which will open on 23 April 1996, the date of Dr. Harris’ 93rd birthday. Dr. Harris, the major donor to the museum has devoted his career to fostering preventive dentistry and the care of children’s teeth.

The museum will focus on the historical development of dentistry of which preventive dentistry is one important aspect. The other major themes include teeth in culture (such items as the worship of teeth (Buddha’s tooth), the use of teeth in circus acts (holding heavy objects suspended from the mouthpiece inserted between the teeth, etc.); the structure and function of teeth in the animal kingdom with skull models to show the various types of teeth and their functions; providing care divided into the various forms of dental practice and a focus exhibit on the four remaining sets of George Washington’s artificial teeth, of special interest to Americans since he was the first president. Visitors to the Dr. Samuel D. Harris National Museum of Dentistry will discover what may have given the father of our country that pained and serious look. A primitive set of dentures may have more to do with George Washington’s expression than affairs of state. Joining Washington’s ivory denture in the new museum will be queen Victoria’s silver and mother-of-pearl dental instruments. These instruments were used exclusively on the British monarch, a nervous patient who appointed Sir Edwin Saunders as her royal dentist.

Audrey B. Davis Ph.D.
University of Maryland
Dr. Samuel D. Harris National Museum of Dentistry
666 West Baltimore Street, Rm. 5A28
Baltimore, Maryland 21201-1586
Tel.: 410 706 0810
Fax.: 410 706 8313
MEETING/CONGRESS

Allemagne, Frankfurt am Main

Eleventh Annual Meeting of the Medical Collectors Association
September 8-11, 1996
Frankfurt am Main, Germany

Location:
The Steigenberger Frankfurter Hof Hotel
Am Kaiserplatz
D-60311 Frankfurt, Germany
Tel.: 069-21502
Fax.: 069 215900

Temporary programme of the Eleventh Annual Meeting of the Medical Collectors Association

Sunday, September 8
6:00pm - 7:00pm Registration
7:00pm - 8:00pm Welcome (Cocktails)

Monday, September 9
9:30am - 12:00 Frankfurt City Tour (by bus)
12:30pm - 2:00pm Group lunch (Restaurant La Grotte)
2:00pm - 6:00pm Visit Saalburg (transfer by bus)
(roman castle, old medical instruments)
6:00pm Return to Frankfurt (by bus)

Tuesday, September 10
9:00am Departure for Heidelberg (by bus)
10:00am - 12:00 Heidelberg City Tour
12:00 - 1:30pm Group lunch (Restaurant Die Rainbach)
2:00pm - 5:00pm Visit Pharmacy Museum (Heidelberg castle)
6:00pm Return to Frankfurt (by bus)

Wednesday, September 11
8:00am - 9:00am Continental breakfast
9:00am - 1:00pm Scientific programme
1:00pm - 2:00pm Lunch break
1:00pm - 5:00pm Visit dealer exhibit
2:00pm - 5:00pm (ladies programme) Visit Art Museum (transfer by bus)
6:30pm Departure to Kronberg (by bus)
7:00pm - 10:00pm Group Dinner (Schlosshotel Kronberg)
10:00pm Return to Frankfurt (by bus)

Latvia, Riga

18th Baltic Conference on the History of Science
Riga, 17-19 January 1996

The international conference ‘Historians of Medicine - Professionals and Amateurs’ is one part of the 18th Baltic Conference on the History of Science and is planned to be dedicated to the centenary of Professor Pauls Stradins (1896-1958), a founder of the Museum of the History of Medicine in Riga.

The 18th Baltic Conference on the History of Science, organized under the sponsorship of the Latvian Academy of Sciences, University of Latvia, Riga Technical University and the P. Stradins Museum of the History of Medicine will be held in Riga from January 17 to 19, 1996

Duration of a plenary report - 15 min.

In case you wish to participate, please write or fax to the organizers.
If you want to present a paper send in an abstract (1-2 typewritten pages) in English, German or Russian. The programme Committee reserves the right to select the contributions according to the subject and quality.

Please direct your correspondence to:
Dr.med. Juris Salaks
Antonijas iela 1
Riga LV-1360
Latvia
Tel.: +371-9-349443
Fax.: +371-2-211323

Italie, Bologne

Le II Congrès de la S.I.S.O.S. (Società Italiana Storia Odontostomatologia) consacré à la recherche et à l’étude des instruments, aura lieu à Bologne en novembre 1995.

Pour information, s’adresser au membre de notre Association:
Mr. Valerio Burello
Corso Moncalieri 450
10133 Torino
Fax.: 39 11 6828001
REPORT WORKSHOP II KAUNAS (LITHUANIA)
August 26 to September 2, 1995
Willem J. Mulder

Introduction

In 1992 a workshop was organized in Riga (Latvia) under the auspices of the European Association of Museums of the History of Medical Sciences (EAMHMS). The main subject was the restauration and conservation of (historical) wet anatomical preparations.

One of the aims of this workshop was to achieve better contacts and closer cooperation between colleagues from the countries of the former Soviet-Union and the West. The first meeting (Workshop I) was so successful that it was unanimously agreed that this initiative should be continued with a second workshop, Workshop II.

In this context, the prominent and stimulating role of the Paul Stradin museum for the History of Medicine in Riga, Latvia, should be mentioned.

Workshop II was held in Kaunas, Lithuania, from August 26 till September 2, 1995.

Subject was the production, conservation and restoration of (human) anatomical bone specimens and their significance for teaching purposes. There were 16 active participants who gave lectures, demonstrations and practical instruction. Furthermore, about 15 auditors also participated, most of them advanced students or members of the staff of the universities of Kaunas and Vilnius. During one day, there was an active participation of colleagues of the Lithuanian Museum for the History of Pharmacy and Medicine.

About half of the active participants were from western countries (Belgium, Switzerland, The Netherlands and the USA), the other half from countries of the former Soviet-Union (Belarus, Latvia, Lithuania and Ukraine).

Organization

The workshop was organized by the Kaunas Medical Academy; the University Museum of Utrecht played a supporting role and coordinated funding activities.

The scientific coordination was in the hands of representatives of the EAMHMS and three representatives of the Kaunas Medical Academy (see Scientific Advisory Board). During the five working days of the workshop, there was a tight schedule of lectures, demonstrations and practical instructions. The purpose was not only to exchange information and ideas, but also to get acquainted with the materials by actually working with them.

Furthermore, visits to relevant museums and academic institutions were organized as well as some visits to museums of general cultural interest. Social integration was enhanced by joint meals and social events.

Mrs. Dr. Angele Rudzianskaite (Kaunas), secretary of the workshop, and Willem J. Mulder (Utrecht), coordinator, were responsible for the day to day organization.

Scientific Advisory Board

The scientific board consisted of the following persons:

Prof. Dr. Rimantas Stropus (Kaunas Medical Academy), chairman
Prof. Dr. Vytautas Siuldiškas (Kaunas Medical Academy)
Dr. Petras Simaska (idem), secretary and interpreter
Dr. Ramunas Kondratas (Smithsonian Institute, Washington)
Prof. Dr. Dr. Christa Habrich (Medizinhistorisches Museum, Ingolstadt)

Scientific Contributions

The contributions can be divided into four main categories:

- New developments in preparation techniques. Mr. Jacobs and Mr. De Moor from Diepenbeek (Belgium) demonstrated and discussed the plastination techniques. Dr. Linas Daugnora from the veterinary section of Kaunas University organized practical work with a broad spectrum of general preparation techniques.
- The history of anatomical collections and current problems of their preservation and maintaining their operational function in the context of medical training and research. Contributions in this field were presented by Gretchen Worden (Philadelphia, USA), Sergej Savenko (Riga, Latvia), John Le Grand (Groningen, the Netherlands), Ludo Heileman (Utrecht, the Netherlands), Ramundas Kondratas (Washington, USA) and Angele Rudzianskaite (Kaunas, Lithuania).
- Physical anthropological aspects were discussed by Rimantas Janskauskas (Vilnius, Lithuania), Ludo Heileman (Utrecht, the Netherlands), Gina Peagle and Rüta Lindberga (Riga, Latvia) and Willem Mulder (Utrecht, the Netherlands).
- Restauration and diagnosis of pathologically deformed material including the newest biochemical techniques such as DNA-research were discussed by Thomas Böni (Zürich, Switzerland) Raphael Panhuysen (Maastricht, the Netherlands) and Willem Mulder (Utrecht, the Netherlands).

In addition, attention was paid to pharmaceutical collections and their history by several members of the staff of the Lithuanian Museum for the History of Medicine and Pharmacy at Kaunas. In short, a wide range of topics was discussed and practical information was exchanged and put to test. The scientific level as well as the interest among participants and auditors was high. This led to many discussions and useful contacts between individual participants.

Proceedings

Due to financial problems in Riga, it was not yet possible to print the proceedings of
the first workshop. To save time and expenses, it is now the intention to publish the joint proceedings of both workshops. The text of the first workshop is ready for printing; in the following weeks, Willem Mulder and Ludo Hellemans will collect and edit the contributions of the second workshop. Hopefully the joint proceedings will be published at the end of this year. However, additional funding will be necessary.

Social and Cultural programme

In addition to the programme of the workshop, there were several excursions and visits to museums and places of interest:
- Anatomical Museum Kaunas Medical Academy
- Museum of the Veterinary Faculty
- Ciurlionis Museum
- Zoological Museum
- Museum of folklore and music instruments
- Open-air Museum ‘Romiskes’
- The restored fortress of Trakai.

During a post-workshop excursion, 13 participants visited the Natural Park Nida, the Amber Museum at Palanga and the Sea Museum at Klaipeda.

Funding

The organisation of workshops such as these, is not possible without funding. The financial means of the western participants are limited, those of the eastern participants are even worse. At the moment, institutions like the Kaunas Medical Academy have sufficient financial means to function in a normal way, but participants from countries of the former Sowjet-Union do not have the means to pay travel expenses or other contributions. The organisers of the Workshop are very glad that a number of sponsors was willing to give financial support to an activity aimed at enhancing the contacts between the Eastern European and Western countries.

The organisers wish to express their thanks to:
- Het Prins Bernard Fonds (the Netherlands)
- The American Insurance Company (USA)
- Tebodin BV, engineers and consultants (the Netherlands and Lithuania)
- The University Museum, Utrecht (the Netherlands)
- De Stichting Johan-Sophia (the Netherlands).

Shortly before the beginning of Workshop II, the coordinator in Utrecht received an urgent request from the university of Riga (Latvia) for help in acquiring instruments needed for physical anthropological research. These instruments would give a new impuls to basic anatomical and anthropological research in Riga. Our sponsors made it possible to react promptly: during one of the practical sessions a set of callipers was presented to Mrs. Dr. Rūta Lindberga of the Institute of Human Anatomy in Riga.

Conclusion

To all participants, Workshop II was very useful and interesting. The contributions, lectures, demonstrations and practical instructions were stimulating and of high quality. Three institutes have already offered to act as host for coming workshops.
Publications

Armocida, Giuseppe/Bock, Giuseppina; La patologia chirurgica attraverso il catalogo nosologico (1833-1875) del Museo porta, Milano, 1995, pp 28

Vanzan Marchini, N. Elena; I mali e i rimedi della Serenissima (Highness' illness and remedies), Vicenza, 1995, pp 392

Vanzan Marchini, N. Elena; Le leggi di sanità della Repubblica di Venezia (Republic of Venice’s health laws), Vicenza, Neri Pozza Ed, 1995, T.1, pp 503

The reconstitution of the struggle against diseases, effect of thorough research in archives, allows an original approach to the relations between the Republic of Venice and its citizens. It gives a possibility to analyze the iconography used to divulge sanitary measures (or sanitary politics). The volume that belongs to the series 'Sources for the History of Health', edited by C.I.S.O (Italian Center of Hospital History of Venetia), deals, after a detailed introduction, with the ample subject subdivided into 206 items. This first volume includes those from aceti (vinegars) to ‘custodi di sanità’ (health keepers). It is an essential tool for those interested in this particular part of the history of health.

Agapit; The Ukrainian historical and medical journal, published by the Central Museum of Medicine in the Ukraine, 37 B. Khmelntsksy street, Kiev, 252030, Ukraine

The Mütter Museum 1996 Calendar

MEDICINE AS ART

The Mütter Museum 1996 Calendar is one of the most intriguing, through-provoking, and stunning photographic calendars that will appear in 1996. It presents the work of a distinguished group of photographers who have turned their attention to the unexpected art inherent in the study of medical science.

This extraordinary calendar showcases some of the more than 20,000 remarkable objects in the Mütter Museum, which houses a fascinating collection of anatomical anomalies, obsolete instruments, and medical memorabilia. Opened to the public in 1863, the Mütter Museum of The College of Physicians of Philadelphia has been praised as ‘arguably America’s finest medical pathological and historical museum’ (Martin Lipp, M.D., author of Medical Landmarks U.S.A.).

The Mütter Museum draws over 18,000 visitors annually and has been featured in Time, the Chicago Tribune, Discover magazine, the Philadelphia Inquirer, and The Wall Street Journal, among other publications, and by the Associated Press. Gretchen Worden, Director of the Mütter Museum, has appeared on Late Night with David Letterman three times.

Printed in four color and duotone on high-quality stock, the photographs in the calendar are the work of eight internationally acclaimed photographers: Max Aguilera-Hellweg, Gwen Akin and Allan Ludwing, Steven Katzman, Scott Lindgren, Olivia Parker, Rosamond Purcell, and Arne Svensson.

The Mütter Museum 1996 Calendar will be sold in quality bookstores throughout the United States and Great Britain, and at the Museum.

Published by The College of Physicians of Philadelphia
19 South 22nd Street
Philadelphia, PA 19103-3097

11'x11 3/4 ' . 28 pages . saddlewire
six four-color and seven duotone reproductions
Publication date: October 31, 1995
IDENTIFICATION AND RETRIEVAL:

In some cases, the difference between practical curatorship and hard labor.

Kees Storm Grooss, Museum Boerhaave

Translated into English, a famous Dutch saying often used by collectors goes something like this: 'Acquiring an object makes an end to all the joy you felt when searching for it'. Combining this saying with the idea derived from the English expression that 'finders' are often 'keepers' provides a very apt description of what happens when an object falls into our hands.

From that moment on, responsibility overrides the joy of the hunt, and a new aspect of collecting becomes important: the administration of your collection. Thenceforth, conceptions like registration, identification and retrieval each start playing an important role.

At this point I will restrict myself to problems that can arise when we have to identify objects in our collection or when we want to make our identification systems accessible. My main goal is to make some general remarks about problems that may occur when the identity of an object is at stake or when looking for a completely new retrieval system that can be applied to our collection.

In addition, since this process takes a lot of time and may interfere with your primary goals, I will provide some suggestions about general rules you should always keep in mind when introducing new activities into your organization.

Personnel time:

When looking for effective ways to identify your objects, one of the most important restrictions can be the amount of personnel time available. It is this factor that will absorb your funds faster than quicksand.

The first question to ask yourself, therefore, is: Is this particular way of identifying objects a method that can be used in my type of organization, or is it a very sophisticated method that will land me in the bankruptcy court? It is important to realize that the survival of your organization and its collection must always be your first priority; this goal should never be made subsidiary to a method for tackling problems like identification and retrieval. Methods that solve these needs may even become a direct threat to your organization if they start to be an obsession. In many cases, this process can consume more personnel time than anyone in your organization had ever expected.

Keep in mind, for instance, that making a thesaurus, as simple this may be, is never just a matter of computerization and registrars. Engaging in this task will also take up a considerable amount of time from your scientific department, a department that is often particularly understaffed and loaded down with too many primary tasks already.

This means that you have to be careful when introducing new methods. What seemed a beautiful solution to one of your major problems may backfire in your particular organization and perhaps even cause bigger problems where you had least expected them.

Identification:

We will first look at the identification of newly acquired objects. It is at this point where the first problems concerning the use of funds can arise.

For a collector or curator, identification of an object is essential and is one of the first things that has to be done when adding an object to the collection. If you want to identify old medical objects, for example, it is obvious that some medical background or training is an advantage. Even then, however, you will not be able to identify every object placed in your custody. Furthermore, anyone who tries to give you the impression that he or she can identify every medical object within his or her reach is either an impertinent liar or has very short arms! It must be clear, therefore, that you need some sort of identification system that gives you enough information to identify an object or at least to understand for what purpose it has been used.

To identify medical objects produced in the second half of the 19th century and on into the 20th century, there is always the possibility of using medical sales catalogues. These catalogues are hard to obtain and, in many cases, rather expensive. There is the additional problem that most of these catalogues were printed on acid-containing paper that has now become hard to handle because it is so brittle. This was one of the reasons why I started, in 1991, in cooperation with The Inter Documentation Company bv. in Leiden, to reproduce the Medical Sales Catalogue on microfiche.

As soon as the Museum Boerhaave collection was filmed, this project was ready to be sold on the open market. The original plan was to sell the catalogues just as they were, with a minimum of extras and accompanied only by a very simple tool to make the collection more accessible. To do so, I drew up a limited list of key words to give the potential buyer a suggestion for developing his own retrieval system. Since the time of its inception, however, we have enlarged the project extensively. It now includes 1604 fiches (an equivalent to 160,000 individual pages).

The retrieval for this extensive identification system obviously became a must. We thus had to look for a suitable way to do so. In this case, we had two possible solutions.
from which to choose: 1.) a simple, structured list of key words, perhaps ending up as a standardized word list (a lexicon1), or 2.) a real thesaurus, officially 'a compilation of words and phrases showing synonymous, hierarchical, and other relationships and dependencies2.

After doing some research on how to create a thesaurus I found that through the years a great deal had been published on how to establish the hierarchical structure of a thesaurus. This involved how to decide on your selection criteria for the words that should be used to create a thesaurus. One of the first things that struck me when doing this research is the fact that the production of a thesaurus begins at a certain moment, but in many cases, never seems to end. During its process of growth, the thesaurus starts to look like a net with meshes that become smaller and smaller as the number of terms used in the thesaurus becomes bigger and bigger. An example is Medline (Dialog Information Retrieval Service of the National Library of Medicine in Bethesda, Maryland) with its 19,300 index terms divided into 10,500 basic terms and 8800 reference terms. (These are just the figures for 1987, but it gives you an idea of what can happen if a project has no well-defined end-point.)

Perhaps this kind of work can be done in a remote monastery where monks have nothing else to do, but definitely not in a museum or an institution with other primary goals and other responsibilities.

This forced me to conclude that a thesaurus was not the way to go if I wanted to solve the problem of identifying nineteenth and twentieth century medical objects. So, the use of a rather conservative method - a structured list of key words - a method which has often been used in medical sales catalogues, was perhaps a fair better starting point. Then too, if we accept the idea that the wheel has already been invented, we can also accept the fact that the old fashioned list of key words can again prove useful.

In the case of the Medical Sales Catalogues, the first phase of the structured list of key words was finished when the number of key words reached the arbitrary maximum of 400.

To find those key words, we had used the indexes of three major sales catalogues published by Jetter & Scheerer, Down Bros. Ltd. and Georg Tiemann & Co. These sources would almost certainly cover the complete range of subjects which we needed to identify the instruments in our collections. Furthermore, if we used these indexes, our final list of key words would reduce the area in which we would have to search for a certain instrument under a certain key word to a maximum of 3-5 pages in every catalogue.

Even though these pages will contain a number of objects, this is still a relatively small number, a maximum being 20-35. Furthermore, looking at such a limited number of instruments is not boring. It is also intellectually stimulating to be able to identify a specific object amongst a cluster of almost identical instruments.

I do agree that the way I have chosen to solve my problem involving the identification of late 19th and 20th century medical objects may not appear to be one of 'high scientific quality', argued and discussed from every possible point of view, and perhaps it will not conform to the highest standards of informatics. Practically speaking, however, it works.

Furthermore, it gives me the satisfaction of being able to identify almost every object that comes into my hands. Then too, while involved in this task I have the opportunity to look at groups of medical objects used for the same purpose, even when my primary target was only one object. This gives me additional training in 'object recognition'. This training is important when you realize that no medical object is absolutely unique and that they often appear in groups. These groups often come from the same source, and there is a great chance that some of the medical objects may have been used for the same purpose. By using this method of identification, it is possible to make 'group identifications' in which you will recognize more than one object in a certain cluster of instruments. This, believe me, provides a lot of fun, and will give you that extra 'kick' to go forward.

If we want to identify 17th, 18th and early 19th century medical objects, different ways to tackle the problem are available.

First of all, it is possible to identify these instruments with the help of illustrations in books or atlases dealing with surgical instruments. Some examples include: E. Blasius, Akiurgische Abbildungen, published in Berlin in 18333 or H.E. Fritze, Armamentarium Akiurgicum4 and A.W.H. Seerig, Armamentarium Chirurgicum5, both published in 1838.

There is one problem in using these books to identify our instruments, however: the illustrations in these books are copied from original engravings thus often making them rather poor and without the necessary detail. This often makes it impossible to discriminate between two closely related instruments.

To overcome this problem we need a source which shows us where to find the first illustration of every existing medical instrument dating from the 17th, 18th and early 19th century.

3 Blasius E: Akiurgische Abbildungen oder Darstellung der blutigen chirurgischen Operationen, Berlin, 1833.
4 Fritze H.E.: Armamentarium Akiurgicum, Utrecht, 1838.
So far, I have found two books that give me this information. The first one is a textbook belonging to the atlas by Seerig and the other is a book printed somewhat earlier in 1796 entitled Übersicht der berühmtesten und gebräuchlichsten chirurgischen Instrumenten and written by Justus Arneman. Both publications give us the opportunity to wander into a world of detailed illustrations made by cunning artists and skilled surgeons. Although far horizons are tempting, you should never forget that your search for those original images may take a lot of time. It will take you to many countries and to many libraries which may prove unproductive.

It is obvious, then, that this type of detailed research can only be done when it fits into your primary goals and when you can find enough personnel with the time to do the job. After you have done this part of the research, however, you will know where to find the illustrations. Your next problem is how to store these images in the proper way.

At this time I still suggest using the microfiche for this purpose. This is because the use of microfiche is currently a fairly well-tested, reliable way to store large numbers of images. In due time this task will be taken over by CD-ROM, but until then the microfiche is tried and true. Let the computer industry do its own trials and experiments; these experiments are definitely far too expensive to be carried out by museums or institutions involved in the history of medicine.

The system of retrieval for identifying medical instruments made before 1850 may look similar to the one I have suggested for instruments made after 1850. If we combine the indexes related to the books we have used and change, if necessary, some old-fashioned terms into modern ones, we are then able to make lists of key words which can, in turn, be used to identify even very old and rare instruments. Again, this method of retrieval has the advantage of not consuming too much time from personnel. What is more, it satisfies our needs.

General conclusion

When developing new ways to identify your objects or when working on a system of retrieval for your identification systems, always keep in mind that:

- if you want to 'discover new territory' and you are equipped for this task, always keep in touch with your colleagues in fellow museums. Never try to explore new territory on your own
- if your are not equipped to carry out this task, please do not 'enter the desert' at all; stay where you are.

Try to do those things that only you can do best. Wait until others have explored the new territory; otherwise your wells will dry out and you will be left alone in the desert with no water - in this case, funds and personnel time.

6 J. Arneman: Übersicht der berühmtesten und gebräuchlichsten chirurgischen Instrumenten älterer und neuerer Zeiten, Göttingen, 1796.

THE CHALLENGE OF BIG NUMBERS

Mara Scheelings, Museum Boerhaave

Introduction

Registration of museum objects is often a huge and timeconsuming task. Although in theory all information on objects should be collected, experience has shown that in practice this approach takes too much time. The vast number of objects simply makes this way of working impossible. This article describes the approach the Museum Boerhaave has taken in the registration and documentation of its museum objects. It describes the challenge of big numbers.

First, the (standard) registration and computerized practice will be cleared. This will be followed by a description of the Museum Boerhaave approach, namely three levels of registration: automation, paper documentation (and managing this) and scientific documentation.

The registration practice

Documenting an object means the recording of all information about an object the registrar or scientist can come up with. Imagine the museum staff looking at an object from different angles, measuring all its dimensions and searching through the literature for references and finally recording all this either on paper or in its modern version, the computer (see figure 17).

This practice looks rather time-consuming, but is it really a far fetched situation? In most museums documentation consists of a manual or paper system of inventory cards. Often those cards contain an endless list of information fields and each object in the collection is described in as detailed a way as possible.

And there is an absolute wealth of recordable information. Not only basic administrative information can be recorded, but all possible information of interest for scientific research, restoration, and educational activities. The list of information fields is practically endless.

It is incredibly laborious and time-consuming to discover, validate and organize information about an object, let alone to correct it and to keep it up to date. With a limited number of objects this procedure works fine and will be more or less finished within a reasonable timeframe.

But what if the number of objects is more substantial or what if a large number of objects is acquired? The registrars and scientists involved in documenting the acquisition will be buried under new objects and may end up in a situation as depicted in figure 2.

1 Illustrations made by J.M. Schelings.
The questions then raised are: How long will this job take, will it ever be finished, where to start?

In Museum Boerhaave this is not an unusual situation. Often we have to deal with a large amount of objects.

Take for example the registration around acquisitions. Especially for the medical collection objects are seldom acquired on their own, but rather in large quantities. The complete set of instruments from an important surgeon comes in as a legacy. The storageroom of a hospital, manufacturer or laboratory is cleared. Or a part of the collection of an other museum is taken over.

Such acquisitions have to be registered as soon as possible. Otherwise as we have learned from experience there is a serious possibility that they will never be registered at all. Considerable backlogs will arise. The museum staff may not be finished with one acquisition when the next large acquisition is carried in, sometimes consisting of several thousand objects.

In the collection of Museum Boerhaave this resulted in numerous examples of unregistered and even unnumbered objects. Mystery objects we don’t know where they came from, or how long they have been in the collection. Surely one can always choose to stop acquiring but since collecting is one of the primary tasks of a museum this hardly seems an option.

The computerized practice

Building a computerized collection management system makes the problem of vast numbers even bigger. To make the automation effective, information on all the objects has to be entered into the computer. You have to work with the entire collection in order to make database queries that will yield sensible information. In the case of the Boerhaave this means information on 30,000 objects.

In the early 1980's the Museum Boerhaave tried out an automation of the registration and documentation of objects and books. For a number of objects all existing paper documentation was fed into the computer. It was then calculated that a simple conversion operation for the entire collection would take 35 man years and when information had to be checked against the objects themselves the time needed would at least double².

Such an approach generally results in a system that records a lot of information for a few objects and no information at all for most of them.

In the Boerhaave situation this action would have been an insane undertaking, for two major reasons:

First there is the matter of motivation. Who wants to work on a project that will perhaps be finished by his grandchildren? Surely, the first few thousand objects will be great fun to computerize. But with large collections one will always see that after a certain time the bottom has fallen out of the project, data entry stagnates and sometimes even stops completely.

The second reason is that one has a useful system only when it is completely finished. Until that moment the system gives only incomplete and therefore unusable answers. For example: To a simple question like: how many instruments made by Solingen do we have in the collection?, the answer would be something like: ‘amongst the 20 % that is entered in the computer are 6 objects of Solingen for the other 80 % of our collection I don’t know’. And this would be no answer at all of course.

The Boerhaave approach

The conclusion of the test was unmistakably negative. Museum Boerhaave decided not to start computerization this way.

So how did we tackle this challenge of big numbers?

It is obvious that the starting point of any project must be the certainty that it will be completed and therefore one has to define projects with realistic goals which can be finished within a reasonable amount of time.

Taking this in consideration we developed an automation-concept which can be characterized by the following features:

First of all we decided only to computerize a limited amount of information and to take on only data used to answer questions. Instead of using the computer for storage of all known information about an object, we see it as a retrieval tool to point us to existing written information.

We even try to enter as few data as possible.

This choice implies a distinction between the scientific documentation as free-text on the one hand, and well-defined computer-search-strings on the other.

The second characteristic of our concept is that we build up our database piece by piece. We take on just one field at a time.

Most museums take one object and start filling in all the fields of the corresponding computer record. The number of information fields can really mount up². At Museum Boerhaave the problem is tackled the other way around. With each field we first put in the data for all our objects before moving on to the next field. New fields are attached to the backbone of inventory numbers, one by one.

And with this approach automation is divided in a series of small-scale steps.

³ For instance the Historisch-Voorwerpkaart made by Sectie Informatieverzorging musea in Nederland has 90 fields. The Scientific Instrument Card made by the British Museum Documentation Association has in the region of 85 fields.
The most important reasons for Museum Boerhaave which makes this approach preferable:

- Easy to manage:
 From a management point of view the main advantage of our approach is that the whole undertaking is guaranteed to remain manageable. The division of automation into a series of small-scaled short-running projects ensures that it never runs out of control. Each project undertaken should be finished within one year and the number of people working on a project is limited.
- Stimulating:
 From the workers point of view the advantages are even more marked. Because of the piecemeal construction, everyone knows that the project he is involved in, will take only a limited amount of his time. Moreover, as soon as a project is finished the data becomes usable, so they themselves will directly profit from it, which is very stimulating.
- Clear definitions:
 It is of crucial importance to have a general consensus on what the data fed to the computer means. As one computer field at a time is tackled, it is relatively easy to analyse the specific problems that might occur, and standardize terminology. We only have to think about and reach consensus on one field at the time. Of course, this approach is much more convenient than being forced to define the next 30 years of work all at once.
- Undetermined future:
 Our hands are never tied. We are free to add whatever index we wish in whatever shape we find suitable. And at any point the enterprise can be considered to be finished.
- Instant pay off:
 Perhaps the most important characteristic is that we get instant pay off. The result of a project is directly brought into action. Thus from the very start the system has repaid the time that had been invested.
 Since each project spans the entire collection, answers to questions will include the complete collection. And this is quite unique, at least in Holland. Furthermore, because the system comprises the complete collection the system can be used as a management tool, for example for planning conservation or registration.
 Thus far 6 projects are completed. We have a system which gives us the following specific information about every object in the collection:
 - the inventory numbers of the object
 - the location of the object in store or in the displays
 - information about the acquisition of the object. The method of acquisition: was it bought or given to us or is it on loan. The name of the person or institution from whom we acquired it. And the year of acquisition;
 - the frequency of conservation. This means the inspection- or conservation interval. This interval can be a half year, one year, 5 years or 10 years. The actual date of conservation and the next date of inspection. This is used as a planning tool for conservation.
 - the classification of the object expressed in a code
 - finally the cultural and historical importance of the object.

At this moment two projects are running; production period and associated names such as maker, designer, assembler, collector, etc. and another project is in preparation; the name of the object.

Basic level of registration: Automation

The computerized information fields mentioned above are regarded as the basic level in our registration system, a first inventory, and the absolute minimum of information we register per object. When new objects are added to the collection we start with recording just this basic information, nothing more.

Because only a minimum of information is recorded, acquisitions can be registered quickly. This way we can inventory a large number of objects in a relatively short time, and thus prevent the situation that objects stay unregistered at all.

This first inventory is done for all objects in the collection. All objects are thus retrievable. We know at least that we have them, where they are stored and how they came into the collection.

The second level of registration: paper documentation

The basic level of inventory is definitely not sufficient to document an object. Our museum staff generates much more information than we have computerized.

Therefore we use a manual documentation system in which all interesting objects are described on inventory cards. These cards are completed with all kinds of information for instance the historical background, how the object was used, the construction, references to literature, related objects, etcetera, etcetera.

It is a dynamic system which is constantly changing to reflect the research, interest and creativity of 70 years and still ongoing curatorial and registration work.

For acquisitions information has to be recorded. And information that already exists must be kept up to date and new scientific opinions must be processed.

Managing the paper documentation

As said before producing and maintaining detailed object descriptions is a very time-consuming activity and therefore cannot be done for all objects in our collection. There simply aren’t enough human and financial resources.

Even if money and time were not a problem you would still have to ask yourself whether all objects need this attention. In each collection one can find regrettable acquisitions, inferior duplicates or other items which no longer fit in the collection.

Why spent any resources on those objects?

So to make responsible and accountable choices, Museum Boerhaave created an instrument called Cultural and Historical Importance.
A short explanation of what this really means:
The complete collection is divided into 4 categories: A, B, C and D, on a sliding scale. Group A are the most important to the collection in cultural and historical perspective. That is our top collection. Sliding down to group D, the least important objects to our collection. These objects are even nominated to be removed from the collection. This division is based on general criteria, such as, whether it is of Dutch origin, does it stress a significant development in scientific history or can it be used for presentations.
A few examples:
The 17th century microscope of Anthony van Leeuwenhoek, the collection made by Solingen and the prototype of the artificial kidney by Einthoven are unquestionably ‘A’. A reconstruction of a Huygens clock, a completely empty microscopic slide, or even ‘the Nightwatch’ painted by Rembrandt will all be ‘D’, in the perspective of the Museum Boerhaave collection.
Certainly we realize this is an arbitrary system which needs revising and adjusting constantly.

Nevertheless it is a powerful tool to determine our strategy towards the collection. It gives information on the composition of the collection (see figure 3) necessary to assign time, effort and money.
It helps for instance the restoration department to make accountable choices in what objects to inspect, conserve and restore.
Concerning documentation work, Cultural and Historical Importance is used as a tool to select the objects which are going to be described in more detail.
The main attention will be given to objects with status A and B. Objects in these categories are the only ones that are going to be described.
This implies that for a considerable part of the collection, objects with status C and D, we will never make object descriptions at all. It is hardly useful to give any attention to D objects, because these instruments are of little or no value to our collection.

Within categories A and B a further selection can be made on the basis of for instance production period or subject classification. This makes it possible to concentrate on specific parts of the collection. For example we can define projects for documentation as ‘19th century surgical instruments’ or ‘spectacles’.
The automated retrieval system makes it possible to define small-scale projects by selecting sensible and limited groups of objects to document. It is therefore in itself a powerful instrument in handling big numbers with registration.

The third level of registration: scientific documentation

Besides the first and second level of registration we can even identify a third level: scientific documentation.
This involves extensive research and may result in the presentation of a paper, or a publication of a printed catalogue. This kind of work is reserved only for a few special objects.
The selection-criteria for making scientific descriptions are very strict. These relate not only to the cultural and historical importance but also to other museum tasks, for example exhibitions, lectures or articles.

Conclusion

The starting point for handling big numbers at Museum Boerhaave is always to divide what seems to be one immense incalculable project into a set of smaller steps. Each separate project has realistic goals, is well-organized and controllable, can be executed independently and most importantly can be finished within a reasonable timeframe. This is done by defining the data-entry (the bottle-neck) of each computer-information-field as a separate project and by creating documentation procedures like the three levels of registration, tools like cultural and historical importance and the use of our automatic retrieval system.

This way of handling resulted in an dynamic system where we record little information for all objects, and a lot of information for only a few objects (see figure 4). We at least know where our junk is and we have well documented our treasures.

The registration story does not end here. Our registration system can evolve in any way we choose. Perhaps in due course we will add the inventory cards to the computer database.

Then there is the matter of removing discrepancies between the written records and what is on the shelf and reviewing records for accuracy and we are only beginning to dream about allowing some form of public access to information, attaching images of the objects or multimedia.

Académie de Médecine de Turin
Guiseppina Bock - Berti

L'histoire de l'Académie de Médecine de Turin débute le 28 novembre 1819, lorsqu'un groupe de médecins de Turin, tous appartenant au Collège de Médecine au de Collège de Chirurgie, se réunirent dans l'édifice de l'ex-couvent des Frati Minimi de Via Po 18 pour donner naissance à une société scientifique qui aurait pour but d'approfondir les études dans le domaine de la médecine et de la chirurgie. Une des premières préoccupations des membres associés de la nouvelle société fut de trouver une publication pour leurs travaux scientifiques.

Ceux-ci furent d'abord publiés dans le 'Repertorio delle Scienze Fisico-Mediche', mais en 1838 les membres associés trouvèrent les moyens pour réaliser une revue dédiée exclusivement à la médecine intitulée: 'Giornale delle Scienze Mediche'. Quatre ans plus tard le souverain Carlo Alberto reconnut officiellement la société.

L'activité se poursuivait les années suivantes avec la publication de nombreux travaux scientifiques de haut niveaux, lesquelles étaient présentées aux réunions périodiques. Finalement, après avoir surmonté bien des difficultés, le 10 février 1846, le titre d'Académie Royale fut conféré à la 'Società Medico Chirurgica', pouvant de cette façon bénéficier de locaux appartenant à l'Etat.

Les premiers locaux étaient deux salles au rez-de-chaussé du cloître de S. Francesco da Paola de Via Po 18.

En 1848 le 'Giornale delle Scienze Mediche' devint 'Giornale della Regia Accademia MedicoChirurgica' et après la deuxième guerre mondiale avec l'avènement de la République, le titre transformé en 'Giornale dell' Academia di Medicina'. Aujourd'hui les locaux de l'Académie de Médecine sont ceux donnés en 1893 par le Ministère de l'Instruction Publique, et qu'occupait précédemment occupé par l'Institut de Physiologie.

Le but principal de l'Académie, depuis sa fondation, est de représenter pour ses membres associés et pour tous les confrères hospitaliers, universitaires et professionnels un point de repère et de connaissance de premières importances. La devise de l'Académie a toujours été 'Libre opinion, libre discussion'.

Le 'Giornale dell' Accademia' publie les travaux des membres associés les mémoires et les productions scientifiques d'auteurs italiens et étrangers, et surtout les comptes-rendus des mises à jour scientifiques ou des congrès qui se sont déroulés dans les locaux de la société. Le 'Giornale' est publié une fois par an au début de l'année academique.

La bibliothèque de la société possédait des milliers de volumes qui furent presque totalement détruits dans un incendie causé par les bombardements de l'aviation en 1943. Elle recueille aujourd'hui à peu près 7000 volumes qui sont à la disposition des membres associés et des chercheurs.

L'Académie est composée de 120 membres associés ordinaires, 13 membres associés honoraires nationaux, 16 membres associés honoraires étrangers, tous nommés par décret ministériel.

Les réunions scientifiques de l'Académie ont lieu tous les quinze jours dans l'Aula Magna de Via Po 18.

Le financement de l'activité de l'Académie est assuré grâce à la contribution annuelle des membres-associés ordinaires et du 'Ministero dei Beni Culturali e Ambientali' et à d'éventuelles aides venant des associations publiques et privées de Turin.
The following object was brought to the Science Museum in London by a lady, who was French by birth. The mystery object is assumed to be medical since it comes from a house in the South of France which was owned by a medical family for many generations.

It is a roughly made glass vessel. The upper part, which seems to be made from a piece of glass tubing, is fused to the lower part, and connects with it via an opening. Maximum width is 31 cm and the diameter of the base is 14 cm. Someone had, perhaps not surprisingly, suggested to her that it was a urinal, but it is not. The open end of the tube is rather sharp, and emptying liquid from the lower part is rather difficult. If anyone can tell us what it is, please inform your editor and he will publish your answer in the next Bulletin.

Histological and histopathological Techniques

A letter with the following contents has reached your editor:

'The writer of this letter wants to study equipment and techniques used in histological and histopathological laboratories during the first half of this century, especially the period 1915-1950. This includes embedding of tissue and embedding units, water baths, staining procedures and units, microtomes and microscopes. Museum
The Library of Medical History
on microfiche

Editor: K.S. Grooss, Museum Boerhaave, Leiden

A collection of rare titles, mainly from the library of the Museum Boerhaave in Leiden. The selection of authors and titles is based on Garrison and Morton's Medical Bibliography.

The collection of titles is divided into 28 subjects, among which: Anatomy, Boerhaave, Electro-cardiography, History of Medicine, Public Health / General Medicine / Hygiene, Surgery.

All titles are also available separately, minimum order 150 Dutch guilders.

395 monographs and 18 serials

Brochures available free on request.

Medical Instrument Catalogues
on microfiche

Editor: K.S. Grooss, Museum Boerhaave, Leiden

A microfiche collection of sales catalogues of medical instrument makers who have been advertising in printed matter since the 18th century.

This collection offers an illustrated history of medical instruments which gives a good idea of the range of instruments employed in medical procedures. An indispensable source of information for any researcher dealing with the history of medicine.

The collection now contains catalogues from the richly endowed libraries of Museum Boerhaave at Leiden and the Thackray Medical Museum in Leeds.

694 sales catalogues on 2,146 microfiche

Brochures available free on request.

IDC
Microform Publishers
P.O. Box 11205, 2301 EE Leiden, The Netherlands Fax 31-71-13 17 21
Un projet conforme aux désirs des consommateurs Library of Medical History

Afin d’augmenter l’intérêt de la Library of Medical History pour l’utilisateur futur, IDC a décidé d’agrandir le projet en ajoutant des livres que vous avez sélectionnés vous-même.

Si vous désirez, sans aucune obligation de votre part, participer à l’agrandissement de ce projet, vous pouvez envoyer les données bibliographiques de 10 publications médico-historiques d’avant 1900 que vous préférez au rédacteur du bulletin de l’AEMHSM. Celui-ci en assure le traitement et la sélection finale.

Si un ou plusieurs des titres que vous avez mentionnés sont sélectionnés et intégrés au projet, nous vous enverrons une de ces publications sur micro-fiche. Vous participerez ainsi activement à la réalisation d’une bibliothèque médico-historique de grande valeur et vous pouvez vous habituer simultanément au support d’informations qu’est la micro-fiche. Vous pourrez alors vous assurer qu’une bibliothèque en micro-fiches représente non seulement une économie d’argent et de temps mais qu’elle est aussi très facile à manipuler.

N’oubliez surtout pas qu’il n’est pas nécessaire de vous lier à tout le projet et que vous pouvez constituer votre sélection personnelle puisque les livres de la Library of Medical History peuvent s’acheter aussi séparément. Le montant minimum de votre commande doit être de NLG 150 (environ DEM 135, FRF 450, ou GBP 52) et pour ce montant vous pouvez obtenir par exemple: Dionis, Cours d’Opérations, 1708; Heister, Chirurgie. In welcher alles was zur Wund-Arzney gehöret, 1743 et Rhazes, De variolis et morbilis, 1766.

Si vous vous étiez procuré ces livres dans une vente publique ou dans une librairie ancienne, ils vous auraient coûté la bagatelle de NLG 5000 à 7000 (DEM 4400-6100, FRF 14.700-20.000 ou GBP 1750-2400). Vous disposez, il est vrai, des originaux mais la source sur micro-fiche satisfait aussi bien à la recherche que le vrai livre. Si vous désirez finalement utiliser le livre pour une exposition, un prêt à usage d’une bibliothèque amie vous fournira toujours la solution.

L’achat d’un simple recueil d’articles qui peut vous servir longtemps et qui est facile à consulter, ne peut en tout cas pas non plus représenter un autre obstacle puisque les recueils d’articles sont en vente via IDC à partir de NLG 700.

Commencez à réaliser ainsi votre bibliothèque médico-historique personnelle sans aucun souci de gestion!

A user friendly project
The Library of Medical History

To make the Library of Medical History even more appealing to the future user, IDC has decided to expand the project by including books you select yourself.

If you wish to take part in the expansion of this project - without any obligation whatsoever - you should send the bibliographic details of ten of your favourite pre-1900 medical history publications to the editor of the EAMHMS bulletin. The editor of this bulletin will then handle the rest and make the final selection.

If one, or more, of the titles submitted by you makes the final selection for the project, we will send you one on microfiche. In this way, you take an active part in establishing a valuable medical history library, while at the same time, you become familiar with microfiche. You will then be able to convince yourself that a library on microfiche not only saves money and space, but is also user friendly.

Above all, keep in mind that you do not have to take the complete library, but can also make your own selection, because each book in the Library of Medical History is available for separate purchase.

Your order should be at least NLG 150 (approx. DEM 135, FRF 450 or GBP 52) and for this amount you have, for example, Cours d’Opérations by Dionis, 1708, Chirurgie. In welcher alles was zur Wund-Arzney gehöret by Heister, 1743 and De variolitis et morbilis by Rhazes, 1766.

If you were to purchase these books at an auction or an antique bookshop, they could easily cost you between NLG 5.000 and 7000 (OEM 4400 and 6100, FRF 14,700 and 20,000 or GBP 1750 and 2400). True, you would then have the originals in your hands, although for research purposes, source text on microfiche is just as good. If you eventually need the actual book for an exhibition, then borrowing it from a friendly library is always a possibility.

The acquisition of a simple microfiche reader should never present an obstacle, since you can obtain one for as little as NLG 700 through IDC. Such a reader is easy to use and would serve your needs for a very long time.

Start your own medical history library without having to think about all the problems of organising it!

IDC
Microform Publishers
P.O. Box 11205, 2301 EE Leiden, The Netherlands Fax 31-71-13 17 21
ASSOCIATION EUROPÉENNE DES MUSÉES D'HISTOIRE DES SCIENCES MÉDICALES
EUROPEAN ASSOCIATION OF MUSEUMS OF HISTORY OF MEDICAL SCIENCES

BULLETIN D'ADHÉSION / APPLICATION FORM

Nom de l'organisme ou du correspondant / Name of the Organization or of the corresponding member

Adresse / Address

Pays / Country ... Tél / Phone

Déclare adhérer à l'AEMHSM en tant que : / Wishes to adhere to the AEMHSM as:

Membre individuel / Private member

Membre représentant une institution ou une société / Corresponding member of a Society or of an Institution

Membre bienfaiteur / Benefactor Member

□ Cotisation 199.... : 150 FF / 199..... : Contribution FF 150

□ Cotisation 199.... : 350 FF / 199..... : Contribution FF 350

□ A partir de 1 000 FF / From FF 1 000

Siège social de l’AEMHSM: Musée Claude Bernard à St. Julien en Beaujolais, F-69640 Denice, France.

Index/ Table of contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Nouvelles de l’AEMHSM/EAMHMS News</td>
</tr>
<tr>
<td>3-5</td>
<td>Nouvelles des Musées et collections/News of Museums and Collections</td>
</tr>
<tr>
<td>7-21</td>
<td>Projets d’Expositions et Congres/Planned Exhibitions and Congresses</td>
</tr>
<tr>
<td>22-23</td>
<td>Publication</td>
</tr>
<tr>
<td>24-42</td>
<td>Varia</td>
</tr>
</tbody>
</table>
MÉDECINE
ET
SCIENCES
ANCIENNES

LIBRAIRIE THOMAS-SCELER
Lucien SCHELER et Bernard CLAVREUIL
19, rue de Tournon - 75006 Paris