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Foreword 
 
 There is hardly any doubt that NMR is nowadays the 
most powerful and perhaps also the most beautiful analytical 
technique.  Its versatility and its range of applications is truly 
unlimited. 
 NMR is unique in the sense that it derives its power 
largely from a quantum mechanical understanding of its 
foundations.  Those who master a mathematical description 
of NMR experiments have an enormous advantage over users 
who blindly follow the rules of the instruction manuals. 
 The most elegant, most simple, and also most intuitive 
description developed so far is the product operator formal-
ism that is the central subject treated in this book.  This 
formalism is like a magic key that provides access to the 
enormous arsenal of NMR techniques available today and 
permits the user to select and properly apply the most suited 
tools as well as to develop himself novel, perhaps even more 
useful, techniques. 
 I am convinced that this pedagogically very well done 
book by Gheorghe D. Mateescu and Adrian Valeriu will 
serve its purpose exceptionally well in the hands of numerous 
novices that intend to enter this fascinating field of science. 
 
          Richard R. Ernst 
 
Asilomar,  April 1992 
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Preface 
 
 Until recently, the teaching and understanding of modern 
(pulse) Nuclear Magnetic Resonance has made successful use of 
vector descriptions, including handwaving, since the pulse sequences 
were relatively simple.  The advent of two-dimensional NMR made it 
practically impossible to explain the intricate effects of combined 
pulses and evolutions exclusively on the basis of vector representa-
tion.  It thus became necessary to use an appropriate tool, the density 
matrix (DM) formalism.  The DM treatment is generally found in 
specialized books which emphasize its quantum mechanical founda-
tion.  The quantum mechanical approach, however, constitutes a 
significant barrier for a growing number of students and scientists in 
the fields of chemistry, biology, medicine and materials research who 
want to gain a better understanding of 2D NMR. 
 This book constitutes a guide for the use of density matrix 
calculations in the description of multipulse NMR experiments.  In 
keeping with its didactic nature, the text follows a step-by-step proce-
dure which contains more detail than usual.  This will give readers 
with modest mathematical background the possibility to work out or 
to create sequences of various degrees of complexity.  Our treatment 
begins with an intuitive representation of the density matrix and 
continues with matrix calculations without trying to explain the 
quantum mechanical origin of pulse effects (rotations) and evolution 
of the matrix elements.  The quantum mechanical approach is deferred 
to Appendix B.  Those who do not want to take anything for granted 
may actually begin with Appendix B (it is assumed, of course, that the 
reader is familiar with the principles and experimental aspects of 
Fourier transform NMR). 
 The first part of the book contains a detailed DM description of 
the popular two-dimensional sequence, 2DHETCOR (2D heteronu-
clear correlation).  It starts with the characterization of the system of 
nuclei at equilibrium in a magnetic field and concludes with the 
calculated signal which results from application of pulses and 
evolutions.  This section is written in such a way as to be accessible to 
students with only an undergraduate mathematical background (there 
is even a Math Reminder in Appendix A).  In order to ensure the 
continous flow of the minimal information needed to understand the 
sequence without too many sidetracks a number of detailed 
calculations of secondary importance are given in Appendix I. 

ix 
 
 
 
 
 
 
 



 
 
 
 
 
 
x     Preface 

 x

 Once familiar with 2DHETCOR, the student is led, step-by-
step, through the calculations of a double-quantum coherence se-
quence and those of the widely used COSY (correlation spectros-
copy).  Throughout this book we did not use the t1 and t2 notations for 
the two time variables in a 2D experiment.in order to avoid confusion 
with the relaxation times T1 and T2.  Also, there is still no consensus 
as to what notation should be given to the detection period (some call 
it t1, some t2). 
 The second part is entirely dedicated to the product operator 
(PO) formalism.  The student will appreciate the significant economy 
of time provided by this elegant  condensation of the density matrix 
procedure.  He or she will be able to handle in reasonable time and 
space systems of more than two nuclei which would require much 
more elaborate calculations via the unabridged DM treatment. 
 Appendix B offers an accessible quantum mechanical presenta-
tion of the density matrix.  Appendix C contains a selection of angular 
momenta and rotation operators written in matrix form, while 
Appendix D summarizes the properties of product operators. 
Appendices E through M are for students interested in a 
demonstration of the relations and procedures used in the text. 
 Throughout the book, relaxation processes have been neglected; 
this does not affect the essential features of the calculated 2D spectra 
and contributes to the clarity of the presentation. 
 The teaching method presented in this book has been 
successfully used in an Instrumental Analytical Chemistry graduate 
course for the past few years at Case Western Reserve and in several 
short courses. Being essentially a self-sufficient teaching tool (lecture 
notes), this book does not contain literature references.  Numerous 
citations can be found in the books indicated in the Suggested 
Readings section. One of us being a passionate skier, we may say our 
class is for beginners, Farrar and Harriman's, for intermediates, and 
Ernst-Bodenhausen-Wokaun's, for advanced. In fact, our work is a 
synergic complement to Martin and Zektzer's Two-Dimensional NMR 
Methods for Establishing Molecular Connectivity:  A Chemist's Guide 
to Experiment Selection, Performance, and Interpretation. 
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1 

The Density Matrix Formalism 
 
 
 
 

1.  INTRODUCTION 
 
 Only the simplest NMR pulse sequences can be properly 
described and understood with the help of the vector representation 
(or handwaving) alone.  All two-dimensional experiments require the 
density matrix formalism. Even some one-dimensional NMR 
sequences (see Part II.12) defy the vector treatment because this 
approach cannot account for the polarization transfer.  The goal of 
Part I is to show how the density matrix can be used to understand a 
specific NMR pulse sequence.  A "math reminder" is given in 
Appendix A for those who may need it.  After becoming familiar with 
the use of the density matrix as a tool, the reader may find enough 
motivation to go to Appendix B which deals with the quantum-
mechanical meaning of the density matrix.  
 
 

2.  THE DENSITY MATRIX 
 
 Before entering the formal treatment of the density matrix (see 
Appendix B) let us build an intuitive picture.  We begin with the 
simple system of two spin 1/2 nuclei, A and X, with its four energy 
levels E1 to E4 (Figure I.1) generally described in introductory NMR 
textbooks. We assume here (and throughout the book) a negative 
gyromagnetic ratio, � This explains the spin angular momentum 
orientation against the field in the lowest energy level E4.  Of course, 
in this state the magnetic moment is oriented with the field. 
 

1 
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Figure I.1.  Energy levels of an uncoupled (left) and coupled (right) 
heteronuclear AX system.  The first column contains the total 
magnetic quantum number, m.  Transition (precession) frequencies nA 
and nX and the coupling constant J are expressed in Hz.  

 
 The possible connections between the four quantum states 
represented by the "kets" 

+ + - + + - - -, , , ,  
are shown in Table I.1 (we assign the first symbol in the ket to nucleus 
A and the second, to nucleus X). 
 This is the general form of the density matrix for the system 
shown in Figure I.1.  It can be seen that the off-diagonal elements of 
the matrix connect pairs of different states.  These matrix elements are 
called "coherences" (for a formal definition see Appendix B) and are 
labeled according to the nature of the transitions between the 
corresponding states.  For instance, in the transition 

+ + Æ - +   
only the nucleus A is flipped.  The corresponding matrix element will 
represent a single quantum coherence implying an A transition and 
will be labeled 1QA.  We thus find two 1QA and two 1QX coherences 
(the matrix elements on the other side of the diagonal do not represent 
other coherences; they are mirror images of the ones indicated above 
the diagonal).  There is also one double-quantum coherence, 2QAX,  
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related to the transition 
+ + → − − . 

 The zero-quantum coherence ZQAX can be considered as 
representing a flip-flop transition E2ÆE3. The name of this coherence 
does not necessarily imply that the energy of the transition is zero. 
 The diagonal elements represent populations.  
 

 
 Table I.1.  Translation of the Classical Representation of 
 a Two-spin System into a Density Matrix Representation 

 

 

AX + + - + + - - -

+ +

- +

+ -

- -

P 1 Q 1 Q 2 Q

P ZQ 1 Q

P 1 Q

P

1 A X

2 AX

3 A

4

AX

X

 
 
 The density matrix contains complete information about the 
status of the ensemble of spins at a given time.  Populations and 
macroscopic magnetizations can be derived from the elements of the 
density matrix, as we will see later.  The reciprocal statement is not 
true: given the magnetization components and populations we do not 
have enough information to write all the elements of the density 
matrix.  The extra information contained in the density matrix enables 
us to understand the NMR sequences which cannot be fully described 
by vector treatment.  
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3.  THE DENSITY MATRIX DESCRIPTION OF 
A TWO-DIMENSIONAL HETERONUCLEAR 
CORRELATION SEQUENCE (2DHETCOR) 

 
 The purpose of 2DHETCOR is to reveal the pairwise correla-
tion of different nuclear species (e.g., C-H or C-F) in a molecule. This 
is based on the scalar coupling interaction between the two spins. 
 
3.1  Calculation Steps 
 
 Figure I.2 reveals that the density matrix treatment of a pulse 
sequence must include the following calculation steps: 
 
 - thermal equilibrium populations (off diagonal elements are   
                              zero) 
 - effects of rf pulses (rotation operators) 
 - evolution between pulses 
 - evolution during acquisition 
 - determination of observable magnetization. 
 
 Applying the sequence to an AX system (nucleus A is a 13C, 
nucleus X is a proton) we will describe in detail each of these steps. 
 

  

td

t(0) t(1) t(4) t(6) t(7)

90xH

t(2) t(3)

180xC  

DecoupleH

C13

1

t(5)

          90xC

/2et /2et D D1 2

t(8) t(9)

90xH

 
 

Figure I.2.  The two-dimensional heteronuclear correlation sequence: 
90xH te /2 180xC te /2 ∆1 90xH 90xC ∆2 AT. - - - - - - - -
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3.2  Equilibrium Populations 
 
 At thermal equilibrium the four energy levels shown in Figure 
I.1 are populated according to the Boltzmann distribution law: 
 

                                 
exp( / ) exp
exp( / )

j ii i

j j

E EP E kT
P E kT kT

−−
= =

−
 (I.1) 

 
Taking the least populated level as reference we have: 
 
              2 1 1 2/ exp[( ) / ] exp[ ( / 2) / ]AP P E E kT h J kTν= − = +  (I.2) 
 
Since transition frequencies (108 Hz) are more than six orders of 
magnitude larger than coupling constants (tens or hundreds of Hz), we 
may neglect the latter (only when we calculate relative populations; of 
course, they will not be neglected when calculating transition frequen-
cies).  Furthermore, the ratios hνA/kT and hνX/kT are  much smaller 
than 1.  For instance, in a 4.7 Tesla magnet the 13C Larmor frequency 
is νΑ = 50 x 106 Hz and 
 

                 
34 6 1

5
23

6.6 10 Js 50 10 s 0.785 10
1.4 10 (J/K) 300K

Ahp
kT
ν − −

−
−

⋅ ⋅ ⋅
= = = ⋅

⋅ ⋅
 

 
 
This justifies a first order series expansion [see (A11)]: 
 
 
                    2 1/ exp( / ) 1 ( / ) 1A AP P h kT h kT pν ν= ≅ + = +  (I.3) 
 
                    3 1/ exp( / ) 1 ( / ) 1X XP P h kT h kT qν ν= ≅ + = +  (I.4) 
 
                    4 1/ 1 [ ( ) / ] 1A XP P h kT p qν ν≅ + + = + +  (I.5) 
 
 
In the particular case of the carbon-proton system the Larmor 
frequencies are in the ratio 1:4 (i.e., q = 4p).  
 
We now normalize the sum of populations: 
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                                             1 1P P=  
                                             2 1(1 )P p P= +  
                                             3 1(1 4 )P p P= +  
                                             4 1(1 5 )P p P= +  
                                             ____________________ 

  1 1 (I.6)1 (4 10 )P p PS= + =
 

 
Hence,                                  1 1/P S=  
                                             2 (1 ) /P p S= +  
                                             3 (1 4 ) /P p S= +  
                                             4 (1 5 ) /P p S= +  
 
where                                     4 10S p= +  
 
 Given the small value of p we can work with the approximation 
S@4.  Then the density matrix at equilibrium is: 

( )

1

2

3

4

0 0 0 1 0 0 0
0 0 0 0 1 0 010
0 0 0 0 0 1 4 04
0 0 0 0 0 0 1 5

P
P p

D
P p

P p

  
   +  = =
   +
   +  








 

                             

1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 01
0 0 1 0 0 0 4 04 4
0 0 0 1 0 0 0 5

p
  
  
  = +
  
  
  








 

 
 It is seen that the first term of the sum above is very large 
compared to the second term.  However, the first term is not important 
since it contains the unit matrix [see (A20)-(A21)] and is not affected 
by any evolution operator (see Appendix B).  Though much smaller, it 
is the second term which counts because it contains the population 
differences (Vive la difference!).  From now on we will work with this 
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term only, ignoring the constant factor p/4 and taking the license to 
continue to call it D(0): 

   

0 0 0 0
0 1 0 0

(0)
0 0 4 0                                   (I.7)
0 0 0 5

D

 
 
 =
 
 
 

 
Equilibrium density matrices for systems other than C-H can be built 
in exactly the same way. 
 
3.3  The First Pulse 
 
 At time t(0) a 90o proton pulse is applied along the x-axis. We 
now want to calculate D(1), the density matrix after the pulse.  The 
standard formula for this operation, 
 
                               D(1) = R-1 D(0) R, (I.8) 
 
is explained in Appendix B.  The rotation operator, R, for this 
particular case is [see (C18)]: 
 

  90

1 0 0
0 1 01                           (I.9)

0 1 02
0 0 1

xH

i
i

R
i

i

 
 
 =
 
 
 

 

where  i   is the imaginary unit. = -1
 Its inverse (reciprocal), R-1, is readily calculated by 
transposition and conjugation [see (A22)-(A23)]: 

  1
90

1 0 0
0 1 01                      (I.10)

0 1 02
0 0 1

xH

i
i

R
i

i

−

− 
 − =
 −
 − 

 

 
First we multiply D(0) by R.  Since the matrix multiplication is not 
commutative (see Appendix A for matrix multiplication rules), it is 
necessary to specify that we postmultiply D(0) by R: 
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0 0 0 0 1 0 0
0 1 0 0 0 1 01(0)
0 0 4 0 0 1 02
0 0 0 5 0 0 1

i
i

D R
i

i

  
  
  =
  
  
  








 

 

  

0 0 0 0
0 1 01
4 0 4 02                       (I.11)
0 5 0 5

i
i

i

 
 
 =
 
 
 

 

 
Then we premultiply the result by R-1: 
 

1

1 0 0 0 0 0 0
0 1 0 0 1 01 1(1) [ (0) ]

0 1 0 4 0 4 02 2
0 0 1 0 5 0

i
i i

D R D R
i i

i i

−

−

5

   
  − 
  = = 
  − 
  − 
   

 

 

4 0 4 0 2 0 2 0
0 6 0 4 0 3 0 21    (I.12)
4 0 4 0 2 0 2 02
0 4 0 6 0 2 0 3

i i
i i

i i
i i

− −   
   − −   = =
   
   
   

 

  
 It is good to check this result by making sure that the matrix 
D(1) is Hermitian, i.e., every matrix element below the main diagonal 
is the complex conjugate of its corresponding element above the 
diagonal [see (A24)] (neither the rotation operators, nor the partial 
results need be Hermitian).  Comparing D(1) to D(0) we see that the 
90o proton pulse created proton single-quantum coherences,  did not 
touch the carbon,  and redistributed the populations. 
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3.4  Evolution from  t (1) to t (2) 
 
 The standard formula1 describing the time evolution of the 
density matrix elements in the absence of a pulse is: 
 
                                       ( ) (0)exp( )mn mn mnd t d i tω= −  (I.13) 
 
dmn is the matrix element (row m, column n) and wmn=(Em En)/  is 
the angular frequency of the transition mÆn. 

-

 We observe that during evolution the diagonal elements are 
invariant since exp[i(Em Em)/ ] = 1.  The off diagonal elements 
experience a periodic evolution.  Note that dmn(0) is the starting point 
of the evolution immediately after a given pulse.  In the present case, 
the elements dmn(0) are those of D(1). 

-

 We now want to calculate D(2) at the time t(2) shown in Figure 
I.2.  We have to consider the evolution of elements d13 and d24.  In a 
frame rotating with the proton transmitter frequency wtrH,  after an 
evolution time te/2, their values are: 
 
                                     13 132 exp( / 2)ed i i t B= − − Ω =  (I.14) 
                                     24 242 exp( / 2)ed i i t C= − − Ω =  (I.15) 
 
where  W13 13= -w w trH   and  W24 24= -w w trH  . 
 
Hence 
 

   

2 0 0
0 3 0

(2)
* 0 2 0                       (I.16)

0 * 0 3

B
C

D
B

C

 
 
 =
 
 
 

 
B* and C* are the complex conjugates of B and C (see Appendix A).  
 
                                                           
1In our treatment, relaxation during the pulse sequence is ignored.  This 
contributes to a significant simplification of the calculations without 
affecting the main features of the resulting 2D spectrum. 
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3.5  The Second Pulse 
 

The rotation operators for this pulse are [see(C17)]:  

1
180 180

0 0 0 0 0 0
0 0 0 0 0 0

 (I.17);    (I.18)
0 0 0 0 0 0
0 0 0 0 0 0

xC xC

i i
i i

R R
i i

i i

−

−   
   −   = =
   −
   −   

 
 
 
Postmultiplying D(2) by R gives: 
 

180

0 2 0
3 0 0

(2)                 (I.19)
0 * 2

* 0 3 0

xC

i iB
i iC

D R
i iB i

iC i

 
 
 =
 
 
 

 

 
 
Premultiplying (I.19) by R-1 gives: 
 

   

3 0 0
0 2 0

(3)                  (I.20)
* 0 3 0

0 * 0 2

C
B

D
C

B

 
 
 =
 
 
 

 
 
Comparing D(3) with D(2) we note that the 180o pulse on carbon has 
caused a population inversion (interchange of d11 and d22). It has also 
interchanged the coherences B and C (d13 and d24).  This means that 
B, after having evolved with the frequency  ω13  during  the first half 
of the evolution time [see (I.14)], will now evolve with the frequency 
ω24, while C switches form ω24 to ω13.  
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3.6  Evolution from  t (3) to t (4) 
 
 According to (I.13) the elements d13and d42 become: 
 

                            d C13 13exp( / 2)ei t= − Ω  (I.21) 
                            d B24 24exp( / 2)ei t= − Ω  (I.22) 
 

From Figure I.1 we see that in the laboratory frame 
 
                      13 2 ( / 2)X HJ Jω π ν ω π= − = +  (I.23) 
                      24 2 ( / 2)X HJ Jω π ν ω π= − = −  (I.24) 
 
In the rotating frame (low case) w becomes (capital) W.  Taking the 
expressions of B and C from (I.14) and (I.15), relations (I.21) and 
(I.22) become 
 
       13 2 exp[ ( ) / 2]exp[ ( ) / 2]H e H ed i i J t i J tπ π= − − Ω − − Ω +  

        2 exp( )H ei i= − − Ω t
d

 (I.25) 
        (I.26) 24 132 exp( )H ed i i t= − − Ω =
 
 None of the matrix elements of D(4) contains the coupling 
constant J.  The result looks like that of a decoupled evolution.  The 
averaged shift WH (center frequency of the doublet) is expressed while 
the coupling is not.  We know that the coupling J was actually present 
during the evolution, as documented by the intermediate results D(2) 
and D(3).  We call the sequence te/2 - 180C - te/2 a refocusing routine.  
The protons which were fast (W13) during the first te/2 are slow (W24) 
during the second te/2 and vice versa (they change label). 
 
3.7  The Role of  D1  
 
 In order to understand the role of the supplementary evolution 
D1 we have to carry on the calculations without it, i.e., with d13=d24. 
We find out (see Appendix I) that the useful signal is canceled.  To 
obtain maximum signal, d13 and d24 must be equal but of opposite 
signs.  This is what the delay D1 enables us to achieve. 
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Evolution during ∆1 yields: 
 
                                           d d  i13 13 13 15 4( ) ( ) exp( )= - W D
                            = - - - +2 1i i t i JH e Hexp( ) exp[ ( ) ]W W Dp  (I.27) 
                            = - - + -2 1 1i i t i JH eexp[ ( )]exp( )W D Dp  
  
                 d i i t i JH e24 1 15 2( ) exp[ ( )]exp( )= - - + +W D Dp  (I.28) 
 
To achieve our goal we choose ∆1=1/2J, which implies pJ∆1=p/2.  
 
Using the expression [see (A16)] 
 
                   exp( / ) cos( / ) sin( / )± = ± =i i ±ip p p2 2 2  
 
                                        exp( )- =i -J ip D1  
  (I.29) 
                                        exp( )+ =i +J ip D1  
 
We now have  
 
                              d i tH e13 15 2( ) exp[ ( )]= - - +W D    
  (I.30) 
                              d i tH e24 15 2( ) exp[ ( )]= + - +W D  
 
For the following calculations it is convenient to use the notations  
 
                                      c tH e= +cos[ ( )]W D1  
  (I.31) 
                                      s tH e= +sin[ ( )]W D1  
 
which lead to 
 
                                       d c  is

is

13 5 2( ) ( )= - -
  (I.32) 
                                       d c  24 5 2( ) ( )= + -
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At this point the density matrix is: 

      (I.33) 

3 0 2( ) 0
0 2 0 2(

(5)
2( ) 0 3 0

0 2( ) 0 2

c is
c is

D
c is

c is

− − 
 − =
 − +
 + 

)

 
 
3.8  Third and Fourth Pulses 
 
 Although physically these pulses are applied separately, we 
may save some calculation effort by treating them as a single 
nonselective pulse.  
 The expressions of R90xC and R90xH are taken from Appendix C. 
 

R R RxCH xC xH90 90 90=  
 

1 0 0 1 0
1 0 0 0 1 01 1

0 0 1 0 1 02 2
0 0 1 0 0 1

i i
i i

i i
i i

   
   
   =
   
   
   

0

 

 
1 1

1 11
1 12                      (I.34)

1 1

i i
i i
i i

i i

− 
 − =
 −
 − 

 

 
The reciprocal of (I.34) is: 
 

                            

1
90

1 1
1 11
1 12

1 1

xCH

i i
i i

R
i i

i i

−

− − − 
 − − − =
 − − −
 − − − 
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D R xCH( )5 90◊  
3 2 ( ) 3 2( ) 3 2( ) 3 2 (
2 2( ) 2 2 ( ) 2 2 ( ) 2 2( )1
3 2( ) 3 2 ( ) 3 2 ( ) 3 2( )2
2 2 ( ) 2 2( ) 2 2( ) 2 2 ( )

i c is i c is i c is i c is
i c is i c is i c is i c is
i c is i c is i c is i c is

i c is i c is i c is i c is

− − + − − − − − − 
 − − + − − + − + − =
 − + − − + − + + +
 − + + + + − + + + 

)

 
Premultiplying the last result by R  gives xCH90

1-

            

5 4 0 4
4 5 4 01(7)

0 4 5 42                   (I.35)
4 0 4 5

i is ic
i is ic

D
ic i is

ic i is

− − 
 − + =
 − +
 − − 

 
 
Comparing D(7) with D(5) we make two distinct observations.  First, 
as expected, carbon coherences are created in d12 and d34 due to the 
90xC pulse.  Second, the proton information [s = sinΩH(te + ∆1)] has 
been transferred from d13 and d24 into the carbon coherences d12 and 
d34, which are  

                                          
d i i

12
4

2
= - s

 

                                          
d i i

34
4

2
= + s

 
This is an important point of the sequence because now the mixed 
carbon and proton information can be carried into the final FID.  
 
3.9  The Role of  D2 
 
 As we will see soon, the observable signal is proportional to the 
sum d12 + d34.  If we started the decoupled acquisition right at t(7), the 
terms containing s would be cancelled.  To save them, we allow for 
one more short coupled evolution ∆2.  Since no r.f. pulse follows after 
t(7), we know that every matrix element will evolve in its own box 
according to (I.13).  It is therefore sufficient, from now on, to follow 
the evolution of the carbon coherences d12 and d34 which constitute the 
observables in this sequence. 
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According to (I.13), at t(8) coherences d12 and d34 become 
 
                        d i s i12 12 28 1 2 2( ) ( / ) exp( )= - - W D  (I.36) 
                        d i s i34 28 1 2 2

34
( ) ( / ) exp ( )= + - W D  (I.37) 

 
where Ω12 = w12 wtrC and Ω34 = w34 wtrC indicate that now we are 
in the carbon rotating frame, which is necessary to describe the carbon 
signal during the free induction decay. 

- -

 As shown in Figure I.1 the transition frequencies of carbon (nu-
cleus A) are: 

n n n

n n n

12

34

2 2

2 2

= + = +

= - = -

A C

A C

J J

J J
 

 
Since ω = 2πν, and we are in rotating coordinates we obtain: 
 
                                         W W12 = +C Jp  (I.38) 
                                         W W34 = -C Jp   (I.39) 
 
Hence, 
 
               d i s i i JC12 2 28 1 2 2( ) ( / ) exp( ) exp( )= - - -W D Dp  (I.40) 
               d i s i i JC34 2 28 1 2 2( ) ( / ) exp( ) exp( )= + - +W D Dp  (I.41) 
 
 Analyzing the role of ∆2 in (I.40 41) we see that for ∆2 = 0 
the terms in s which contain the proton information are lost when we 
calculate the sum of d12 and d34   As discussed previously for ∆1, here 
also, the desired signal is best obtained for ∆2 = 1/2J, which leads to 
exp(± ipJ∆2) = ± i and 

-

 
                        d s i C12 28 1 2 2( ) ( / ) exp( )= + - - W D  (I.42) 
                        d s i C34 28 1 2 2( ) ( / ) exp( )= - + - W D  (I.43) 
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3.10  Detection 
 
 From the time t(8), on the system is proton decoupled, i.e., both 
d12 and d34 evolve with the frequency ΩC: 
 
               d s i i tC C d12 29 1 2 2( ) ( / ) exp( ) exp( )= + - - -W D W  (I.44) 
               d s i i tC C d34 29 1 2 2( ) ( / ) exp( ) exp( )= - + - -W D W  (I.45) 
 
Our density matrix calculations, carried out for every step of the 
sequence, have brought us to the relations (I.44-45).  Now it is time to 
derive the observable (transverse) carbon magnetization components. 
This is done by using the relations (B19) and (B20) in Appendix B: 
 
                   (I.46) M M iM M p d dTC xC yC oC= + = - +( / )( * *4 12 34 )
 
The transverse magnetization MT is a complex quantity which com-
bines the x and y components of the magnetization vector.  We must 
now reintroduce the factor p/4 which we omitted, for convenience, 
starting with (I.7).  This allows us to rewrite (I.46) into a simpler 
form: 
                                 M M d dTC oC= - +( * *

12 34 )  (I.47) 
 
By inserting (I.44-45) into (I.47) we obtain 
 
                       M M s i iT tC oC C C d= 4 2exp( ) exp( )W D W  (I.48) 
 
With the explicit expression of  s  (I.31): 
 
         M M t i iT tC oC H e C C d= +4 1 2sin[ ( )]exp( ) exp( )W D W D W  (I.49) 
 
 Equation (I.49) represents the final result of our 2DHETCOR 
analysis by means of the density matrix formalism and it contains all 
the information we need. 
 We learn from (I.49) that the carbon magnetization rotates by 
ΩCtd while being amplitude modulated by the proton evolution ΩHte. 
Fourier transformation with respect to both time domains will yield 
the two-dimensional spectrum. 
 The signal is enhanced by a factor of four, representing the 
H/gC ratio.  The polarization transfer achieved in 2DHETCOR and g
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other heteronuclear pulse sequences cannot be explained by the 
vector representation. 
 When transforming with respect to td,  all factors other than 
exp(iΩCtd) are regarded as constant.  A single peak frequency,  ΩC, is 
obtained.  When transforming  with respect to te, all factors other than 
sin[ΩH(te + ∆1)] are regarded as constant.  Since 

                                          sina
a a

=
- -e e

i

i i

2
 (I.50) 

both +WH  and -WH  are obtained (Figure  I.3a). 
 

C C C

H

W

-W

H

H

0

W
C

(a)

H

WC

13W

24W

13-W

24-W

0

(b)

H

12W34W

13W

24W

13-W

24-W

0

(c)  
 
Figure I.3. Schematic 2D heteronuclear correlation spectra (contour 
plot): (a) fully decoupled, (b) proton decoupled during the acquisition, 
and (c) fully coupled.  Filled and open circles represent positive and 
negative peaks.  With the usually employed magnitude calculation 
(absolute value), all peaks are positive.  See experimental spectra in 
figures 3.11, 3.9 and 3.7 of the book by Martin and Zektzer (see 
Suggested Readings). 

 
 Imagine now that in the sequence shown in Figure I.2 we did 
not apply the 180o pulse on carbon and suppressed D1.  During the 
evolution time te the proton is coupled to carbon.  During the 
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acquisition,  the carbon is decoupled from proton.  The result (see 
Appendix I) is that along the carbon axis we see a single peak, while 
along the proton axis we see a doublet due to the proton-carbon 
coupling.  If we calculate the magnetization following the procedure 
shown before, we find: 
 
        M M t t i tTC oC e e C d= - - +2 13 13 2(cos cos ) exp[ ( )]W W W D  (I.51) 
 
Reasoning as for (I.49) we can explain the spectrum shown in Figure 
I.3b. 
 Finally, if we also suppress the decoupling during  the acquisi-
tion and the delay ∆2 we obtain (see Appendix I) 
 
        M iM t t i tTC oC e e d= - - +( / cos cos ) exp( )1 2 13 24 12W W W  
                   - + -iM t t i toC e e d( / cos cos ) exp( )1 2 13 24 34W W W  (I.52) 
 
which yields the spectrum shown in Figure I.3c. 
 The lower part of the spectra is not displayed by the instrument, 
but proper care must be taken to place the proton transmitter beyond 
the proton spectrum.  Such a requirement is not imposed on the carbon 
transmitter, provided quadrature phase detection is used. 
 The peaks in the lower part of the contour plot (negative proton 
frequencies) can also be eliminated if a more sophisticated pulse se-
quence is used, involving phase cycling. If such a pulse sequence is 
used, the proton transmitter can be positioned at mid-spectrum as well. 
An example of achieving quadrature detection in the domain te is 
given in Section 6 (COSY with phase cycling).  
 So far we have treated the AX (CH) system.  In reality, the pro-
ton may be coupled to one or several other protons.  In the sequence 
shown in Figure I.2 there is no proton-proton decoupling.  The 2D 
spectrum will therefore exhibit single resonances along the carbon 
axis, but multiplets corresponding to proton-proton coupling, along 
the proton axis.  An example is given in Figure I.4a which represents 
the  high  field  region  of  the  2DHECTOR  spectrum  of  a molecule  
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Figure I.4b.   Contour plot of the spectrum in Figure I.4a. 

 
 
formally derived from [4,2,2,02,5]deca-3,7,9-triene (Nenitzescu's 
hydrocarbon).  The delays D1 and D2 were set to 3.6 ms in order to optimize 
the signals due to 1J (@140 Hz).  It should be noted that the relation (I.49) 
has been derived with the assumption that  D1 = D2 = D = 1/2J.  For any other 
values of J the signal intensity is proportional to sin2pJD.  Thus, signals 
coming from long range couplings will have very small intensities.  Figure 
I.4b is a contour plot of the spectrum shown in Figure I.4a.  It shows in a 
more dramatic manner the advantage of 2D spectroscopy:  the carbon-proton 
correlation and the disentangling of the heavily overlapping proton signals. 
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3.11  Comparison of the DM Treatment with Vector  
                        Representation 
 
 It is now possible to follow the 2DHETCOR vector representa-
tion (Figures I.6a through I.6d) and identify each step with the 
corresponding density matrix.  It will be seen that one cannot draw the 
vectors for the entire sequence without the knowledge of the DM 
results. 
 As demonstrated in Appendix B (see B15-B22) the magnetiza-
tion components at any time are given by: 
 
 M M p d d d dzA oA= - - + -( / )( )2 11 22 33 44  (B15) 
 

 M M q d d d dzX oX= - - + -( / )( )2 11 33 22 44  (B21) 
 

  (B20) M M p dTA oA= - +( / )( * *4 12 34d )

d
 

 M M q dTX oX= - +( / )( * *4 13 24 )  (B22) 
 
Considering the simplification we made in (I.7), we must multiply the 
expressions above with the factor p/4.  Also, remembering that for the 
CH system q = 4p, we obtain 
 
 M M d d d dzC oC= - - + -( / )( )2 11 22 33 44  
 

 M M d d d dzH oH= - - + -( / )( )8 11 33 22 44  
 

 M M d dTC oC= - +( * *
12 34 )

)

 (I.53) 
 

  M M d dTH oH= - +( / )( * *4 13 24
 
We will use the relations (I.53) throughout the sequence in order to 
find the magnetization components from the matrix elements. 
 At time t(0) the net magnetization is in the z-direction for both 
proton and carbon. Indeed, with the matrix elements of D(0) (see I.7) 
we find 
 
 M M MzC oC oC= - - + - = +( / )( )2 0 1 4 5  
 

 M M MzH oH oH= - - + - = +( / )( )8 0 4 1 5  (I.54) 
 
The transverse magnetizations MTC and MTH are both zero (all off- 
diagonal elements are zero), consistent with the fact that  no pulse has 
been applied. 



 
 
 
 
 
 
 
22     Density Matrix Treatment 

 Although they are indiscernible at thermal equilibrium, we will 
now define fast and slow components using Figure I.5. 
 
 

E
E

E

E1

2

3

4

An

Xn

An

Xn

An + J/2

Xn + J/2

An - J/2

Xn - J/2

(      )

(      )

(      )

(      )

C HC  H

f  f

f  s

s  f

s  s  
 
 

Figure I.5.  Fast and slow labeling. 
 
 

It is seen that protons in states 1 and 3 cannot be involved but in the 
higher frequency transition 1 3, i.e., they are fast.  Those in states 2 
and 4 are slow.  Likewise, carbons in states 1 and 2 are fast, those in 
states 3 and 4 are slow.  Therefore, according to (I.53) and (I.54), at 
t(0) half of MzH is due to fast protons (d11 d33) and the other half to 
slow protons. The fast and slow components of the proton 
magnetization are marked in Figure I.6 with 13 and 24, respectively. 
For carbon, it is 12 and 34. 

-

-

 Speaking of C-H pairs, a proton can add or subtract to the field 
"seen" by the carbon.  Therefore the carbon will be fast if it pairs with 
a spin-up proton or slow if it pairs with a spin-down proton.  The 
carbon spins will have a similar effect on protons.  Figure I.5 shows 
that the spins become faster or slower by J/2 Hz. 
 Immediately after the 90xH pulse proton coherences were 
created.  Using the matrix elements of D(1) (see I.12) we obtain: 
 

M M i i iMTH oH oH= - + = -( / )( )4 2 2  
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This tells us that the pulse brought the proton magnetization on the 

y-axis (the reader is reminded that in the transverse magnetization, 
MT = Mx + iMy, the real part represents vectors along the x-axis and the 
imaginary part vectors along the y-axis).  It can be verified that the 
longitudinal proton magnetization is zero since d11 d22+d33 d44 = 

  (cf I.53).  The carbon magnetization was not 
affected [Figure I.6a t(1)]. 

-

- -
= - + - =2 2 3 3 0

 The chemical shift evolution WHte/2 is the average of the fast 
and slow evolutions discussed above [see (I.23 24)].  The vector 13 
is ahead by +pJte/2, while 24 is lagging by the same angle (i.e., 

pJte/2).  The DM results [see (I.14 16)] demonstrate the same 
thing:  

-

- -

 
  M M B CTH oH= - +( / )( * *)4  
          = - +( / )[ exp( / ) exp( / )]M i i t i i toH e e4 2 2 2 213 24W W  
          = - + -i M i t i Jt i JtoH H e e( e/ ) exp( / )[exp( / ) exp( / )]4 2 2W 2p p  
 
The carbon is still not affected [Figure I.6a t(2)]. 
 Figure I.6b t(3) tells us that the 180xC pulse reverses the carbon 
magnetization and also reverses the proton labels.  As discussed 
above, the protons coupled to up carbons are fast and those coupled to 
down carbons are slow.  Therefore inverting carbon orientation results 
in changing fast protons into slow protons and vice versa.  This is 
mathematically documented in the DM treatment [see (I.20)].  The 
matrix element B is transferred in the slow (24) "slot" and will evolve 
from now on with the slow frequency W24. The reverse is happening to 
the matrix element C. The longitudinal carbon magnetization changed 
sign: 
 

- - + - = - - + - = -( ) (d d d d11 22 33 44 3 2 3 2 2)  
 
 Figure I.6b t(4) clearly shows that the second evolution te/2 
completes the decoupling of proton from carbon.  The fast vector 13 
catches up with the slow 24 and at t(4) they coincide.  They have both 
precessed a total angle WHte from their starting position along y. We 
can verify that the matrix elements d*

13 and d*
24 are equal at t(4) [see 

(I.25) and (I.26)].  The transverse magnetization, calculated from the 
matrix elements, is 

-
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M M i i t i i t iM i tTH oH H e H e oH H e= - + = -( / )[ exp( ) exp( )] exp( )4 2 2W W W  
 
After separating the real and imaginary parts in MTH we obtain 
 
M iM t i t M t i tTH oH H e H e o H e H e= - + = -(cos sin ) (sin cos )W W W W  H
M M M txH TH oH H e= =real part of sinW          
M M M tyH TH oH H e= =coefficient of the imaginary part of cosW-  
 
This is in full accordance with the vector representation. The carbon 
magnetization is still along z. -
 Figure I.6b t(5) shows what happened during the delay D1 
which has  been chosen equal to 1/2J.  Each of the two proton 
magnetization components rotated by an angle WHD1  but, with respect 
to the average, the fast component has gained p /2 while the slow one 
has lost p /2. As a result, the vectors are now opposite.  We can verify 
[see (I.30)] that at t(5) the elements d13 and d24 are equal and of 
opposite signs. The carbon magnetization did not change. 
 Figure I.6c shows the situation at t(6), after the 90xH pulse. 
When we went through the DM treatment, we combined the last two 
pulses into a single rotation operator and this brought us directly from 
D(5) to D(7).  However, for the comparison with the vector repre-
sentation and for an understanding of the polarization transfer, it is 
necessary to discuss the density matrix D(6).  It can be calculated by 
applying the rotation operator R90xH [see (I.9)] to D(5) given in (I.33). 
The result is 
 

3 2 0 2 0
0 2 2 0 2

(6)                  (I.55)
2 0 3 2 0
0 2 0 2 2

s c
s c

D
c s

c s

− − 
 + =
 − +
 − 

 

 The magnetization components in Figure I.6c are derived from 
the matrix elements of D(6), using (I.53).  What happens to the proton 
magnetization can be predicted from the previous vector representa-
tion but what happens to the carbon cannot.  As far as the proton is 
concerned, its x components are not affected, while the other compo-
nents rotate from y to z and from y  to z, as expected after a 90x 
pulse. 

- -



 
 
 
 
 
 
 

2DHETCOR     25 

 The net longitudinal carbon magnetization does not change, it is 
still MoC , but a sizable imbalance is created between its fast and 
slow components: 

-

 
   M M d d M s soC oC12 11 222 2 3 2= - - = - - - -( / )( ) ( / )( 2 2 )  
 

          = - +M soC ( /1 2 2 ) (I.56) 
 

   M M d d M s soC oC34 33 442 2 3 2= - - = - + - +( / )( ) ( / )( 2 2 )  
 

          = - -M soC ( /1 2 2 ) (I.57) 
 

   M M M MzC oC= + = -12 34  (I.58) 
 
The imbalance term is proportional to s = sin[WH(te+D1)], i.e, it is 
proton modulated.  When s varies from +1 to 1, the quantity 2sMoC 
varies from +2MoC to 2MoC , a swing of 4MoC. The remaining of the 
sequence is designed to make this modulated term observable. 

-
-

 For s greater than 1/4, M12 becomes positive while M34 remains 
negative.  In other words, the fast carbons are now predominantly up 
and the slow ones predominantly down.  A correlation has been 
created between the up-down and the fast-slow quality of the carbon 
spins.  The Figure I.6c is drawn for s @  0.95 
 The last pulse of the sequence, a 90xC, brings us to D(7) [see 
(I.35)] and to Figure I.6d t(7).  It is seen that the vector representation 
can explain how carbon magnetization is affected by the pulse (12 
goes in y and 34 in +y), but it cannot explain the nulling of proton 
magnetization.  Note that from t(5) on, the net magnetization was zero 
(opposite vectors) but now 13 and 24 are null themselves.  The density 
matrix D(7) [see(I.35)] shows 

-

 
                                      M iM sT oC12 1 2 2= -( / ) 
 

                                      M iM sT oC34 1 2 2= +( / )  
 
Separation of the real and imaginary parts gives 
 
                    M M M sx y oC12 120 1= =; ( 2 2-/ ) 
                    M M M sx y oC34 340 1= =; ( 2 2+/ ) 
 
The net carbon magnetization is 
 
                                M M MxC x x= + =12 34 0  
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                                M M M MyC y y oC= + =12 34  
 
The proton modulated term, 2s, is not yet observable (it does not 
appear in MxC or MyC).  The delay D2 will render it observable.  We see 
in Figure I.6d t(8) that the two components have rotated by an average 
of WCD2.  The fast one has gained p /2 and the slow one has lost p /2.  
As a result, the two vectors (of unequal magnitude) are now 
coincident.  Relations (I.42) and (I.43) confirm that at time t(8) both 
matrix elements d*

12 and d*
34 have the same phase factor, exp(iWCD2). 

The net carbon magnetization is 
 
M M d d M s s iTC oTC oC C= - + = - - - -( ) ( / / ) exp( )* *

12 34 21 2 2 1 2 2 W D  
                   = 4 2sM ioC Cexp( )W D  (I.59) 
 
The factor 4 in (I.59) represents the enhancement of the carbon 
magnetization by polarization transfer. This could not be even guessed 
from the vector representation. 
 Nothing remarkable happens after the end of D2. The proton 
decoupler is turned on and the carbon magnetization is precessing as a 
whole during the detection time td (no spreadout of the fast and slow 
components). 
 This is the end of the vector representation of the 2DHETCOR 
sequence. Such representation would not have been possible without  
the complete information provided by the DM treatment. 
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Figure I.6a. Vector representation of 2DHETCOR from t(0) to t(2).  
The magnetization vectors are arbitrarily taken equal for C and H in 
order to simplify the drawing.  Actually the 1H magnetization at 
equilibrium is 16 times larger than that of 13C. 
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Figure I.6b.  Vector representation of 2DHETCOR from t(3) to t(5). 
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 34

H C

t(6)13

24

 12

 
 
 
Figure I.6c.  Vector representation of 2DHETCOR at time t(6). The 
carbon magnetization components depend on the value of s (they are 
proton modulated): 

M s Mz oC12 1 4 2= - -( ) /  
M s Mz oC34 1 4 2= - +( ) /  

s tH e= +sin ( )W D1  

The figure is drawn for s @  0.95. 
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 34

t(8)

 12

 34

t(7)

 12

C

 
Figure I.6d.  Vector representation of 2DHETCOR at t(7) and t(8).  
The carbon magnetization components at t(7) are 
 M s My o12 1 4 2= -( ) C /  
 M s My34 1 4 2= +( ) oC /                     s tH e= +sin ( )W D1  

The proton magnetization components, both fast and slow, have 
vanished. 
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4.  THE DENSITY MATRIX DESCRIPTION OF A 
DOUBLE-QUANTUM COHERENCE EXPERIMENT 

(INADEQUATE) 
 

 The main goal of INADEQUATE (Incredible Natural 
Abundance DoublE QUAntum Transfer Experiment) is to eliminate 
the strong signal of noncoupled 13C nuclei in order to easily observe 
the 200 times weaker satellites due to C-C coupling.  This is realized 
by exploiting the different phase responses of the coupled and non-
coupled spin signals when the phase of the observe pulse is varied 
(see Figure I.7).  The receiver phase is matched with the desired 
signal.  It shall be seen that the different phase behavior of the coupled 
nuclei is connected with their double-quantum coherence.  The beauty 
of INADEQUATE resides in its basic simplicity: only a two-step 
cycle is theoretically needed to eliminate the unwanted signal. That 
the real life sequences may reach 128 or more steps is exclusively due 
to hardware (pulse) imperfections whose effects must be corrected by 
additional phase cycling. 
 The essence of INADEQUATE can be understood by following  
the basic sequence shown in Figure I.7. 
 
 

td

t(0) t(1) t(8)

90

t(6) t(7)

90x

t(2) t(3)

180x

t(4) t(5)

90x F
Y

Dt t

 
 
 

Figure I.7.  The INADEQUATE sequence: 90x − τ − 180x τ 
90x ∆ 90Φ

−
− − − − AT  (proton decoupling is applied 

throughout the experiment). 
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4.1  Equilibrium Populations 
 
 At thermal equilibrium the four energy levels shown in Figure 
I.8 are populated according to the Boltzmann distribution law, as 
shown in (I.1) through (I.5). In this case both νA and νX are 13C 
transition frequencies.  The difference between νA and νX, due to 
different chemical shifts, is too small to be taken into account when 
calculating the populations.  We assume q = p and (I.6) becomes: 
 
                                      1 1P P=  
                                      2 1(1 )P p P= +  
                                      3 1(1 )P p P= +  
                                      4 1(1 2 ) /P p P= +  
                                      _____________________ 
                                        1 11 (4 4 )p P PS= + =  
 
Hence,                           1 1/P S=  
                                      2 3 (1 ) /P P p S= = +  
                                      4 (1 2 ) /P p S= +  
 
where                             4 4 4S p= + ≅  
 
and the density matrix at equilibrium is: 
  

1

2

3

4

0 0 0 1 0 0 0
0 0 0 0 1 0 01(0)
0 0 0 0 0 1 04
0 0 0 0 0 0 1 2

P
P p

D
P p

P p

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎣ ⎦⎣ ⎦

 

 
1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 01                (I.60)
0 0 1 0 0 0 1 04 4
0 0 0 1 0 0 0 2

p
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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+1

(      )

(      )

0 (      )

m A X

E1

E2
E3

E4

0 (      )

An

Xn
An

Xn An + J/2
Xn + J/2

An - J/2
Xn - J/2

1

 
 

Figure I.8.  Energy levels of a homonuclear AX system (noncoupled 
and coupled). Transition frequencies and coupling constants are in Hz.  

 
We will again ignore the (large) first term which is not affected by 

pulses or evolution,  put  aside  the constant  factor  p/4  and start with  
 

0 0 0 0
0 1 0 0

(0)                              (I.61)
0 0 1 0
0 0 0 2

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 

In order to compare the results of the density matrix treatment with 
those of the vectorial representation, we will calculate for every step 
of the sequence the magnetization components, using the relations 
(B15)  (B22).  We must also consider that here q = p and that MoA 
= MoX = Mo/2, where Mo refers to magnetization due to adjacent 13C 
atoms A and X.  Thus our magnetization equations become (cf. I.53): 

−

 

                              11 22 33 44( / 4)(zA o )M M d d d d= − − + −  
                              11 33 22 44( / 4)(zX o )M M d d d d= − − + −  

                              * *
12 34( / 2)(TA o )M M d d= − +  (I.62) 

                              * *
13 24( / 2)(TX o )M M d d= − +  
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One can check that at thermal equilibrium, when D = D(0) 
 
                          ( / 4)(0 1 1 2) / 2zA o oM M M= − − + − =  
                          ( / 4)(0 1 1 2) / 2zX o oM M M= − − + − =  
 
The transverse magnetization 
 
                          0TA TXM M= =  
 
4.2  The First Pulse 
 
 At time t(0) a nonselective pulse 90xAX is applied.  Since all 
pulses in this sequence are nonselective, the notation AX will be 
omitted.  The density matrix D(1) after the pulse is calculated accord-
ing to: 
                                           1(0) (0)D R D−= R
 
The rotation operator R and its reciprocal 1R−  for the nonselective 90x 
pulse have been calculated in (I.34):  
 

     

1

1 1 1 1
1 1 1 11 1;
1 1 1 12 2

1 1 1 1

i i i i
i i i i

R R
i i i i

i i i i

−

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

−
− −
− −

 

 
First we postmultiply D(0) by R: 
 

                           

0 0 0 0
1 1

(0)
1 1

2 2 2 2

i i
D R

i i
i i

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦
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Premultiplication with 1R−  leads to 
4 2 2 0 2 0
2 4 0 2 2 01 1

(1)   (I.63)
2 0 4 2 0 24 2
0 2 2 4 0 2

i i i i
i i i i

D
i i i i

i i i i

− − − −

− −
= =

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 

We note that the 90o pulse equalizes the populations and creates sin-
gle-quantum coherences.  The longitudinal magnetization is null while 
 
                     ( / 2)( /1 / 2) /TA o oM M i i iM= − + = − 2

o

                     ( / 2)( /1 / 2) / 2TX o oM M i i iM= − + = −
                    T TA TXM M M iM= + = −  
 
We also note that the transverse magnetization is imaginary.  Con-
sidering that MT = Mx + iMy,  it follows that Mx = 0 and  My = − Mo. 
 So far, the vector representation would have been much simpler 
to use.  Let us see, though, what happens as we proceed. 
 
4.3  Evolution from   t (1) to t (2) 
 
 The standard formula describing the (laboratory frame) time 
evolution of the density matrix elements in the absence of a pulse is: 
 
                                 ( ) (0)exp( )mn mn mnd t d i tω= −  (I.64) 
 
dmn is the matrix element and wmn = (Em − En)/  is the angular 
frequency of transition m→n.  Note that dmn(0) is the starting point of 
the evolution immediately after a given pulse.  In our case the ele-
ments dmn(0) are those of D(1).  If the evolution is described in a 
frame rotating at transmitter frequency wtr equation (I.64) becomes: 
 
                 ( ) (0)exp( )exp[ ( ) ]mn mn mn m n trd t d i t i m m tω ω= − −  (I.65) 
 
where  mm and mn  are the total magnetic quantum numbers of states m 
and n (see Appendix B).  
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 Let us apply (I.65) to our particular case (m1 = 1 ; m2 = m3 = 0 ; 
m4 = 1).  As expected, the diagonal elements are invariant during 
evolution since both exponentials are equal to 1.  All single quantum 
coherences above diagonal have mm

−

− mn = 1.  Hence,  
 

                     ( ) (0) exp( ) exp( )mn mn mn trd t d i t i tω ω= −  
                                 (0) exp[ ( ) ]mn mn trd i ω ω= − − t

tΩ                                 (I.66) (0) exp( )mn mnd i= −
 

where Wmn is the evolution frequency in the rotating frame. 
  The rotating frame treatment is useful not only for better 
visualization of the vector evolution but, also, because the detection is 
actually made at the resulting low (audio) frequencies. 
 For the double-quantum coherence matrix element 
 

14 14 14( ) (0) exp( ) exp[ (1 1) ]trd t d i t i tω ω= − +  
                                 (I.67) 14 14(0) exp( )d i= − tΩ
 

where W14 = w14 2wtr.  We note that both single- and double- 
quantum coherences evolve at low frequencies in the rotating frame. 

−

 The zero-quantum coherence matrix element is not affected by 
the rotating frame (m2 − m3 = 0):   
 

                (I.68) 23 23 23 23 23( ) (0) exp( ) (0) exp( )d t d i t d i tω= − = − Ω
 

The zero-quantum coherence evolves at low frequency in both the 
laboratory and rotating frame. 
 We now want to calculate D(2), i.e., the evoluition during the 
first delay t.  For instance 
 

             12 12 12 12(2) (1)exp( ) ( / 2)exp( )d d i i iτ τ= − Ω = − − − Ω  (I.69) 
 

To save space we let  and at t(2) we have: ( / 2) exp( )mn mni i τ− − Ω = B

12 13
*
12 24
*
13 34

* *
24 34

1 0
1 0

(2)                         (I.70)
0 1

0 1

B B
B B

D
B B

B B

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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The z-magnetization is still zero (relaxation effects are neglected). The 
transverse magnetization components are: 
 
                        * *

12 34( / 2)(TA o )M M B B= − +  
                                          12 34( / 4)[exp( ) exp( )]oiM i iτ τ= − Ω + Ω  (I.71) 

                              
* *
13 24( / 2)(TX o )M M B B= − +  

                                          13 24( / 4)[exp( ) exp( )]oiM i iτ τ= − Ω + Ω  (I.72) 
 
We see that there are four vectors rotating with four different angular 
velocities in the equatorial (xy) plane.  We can identify (see Figure 
I.8): 
 

                                         12 12 tr A Jω ω πΩ = − = Ω +  
                                         34 A JπΩ = Ω −  
                                         13 X JπΩ = Ω +  
                                         24 X JπΩ = Ω −  
 
4.4  The Second Pulse 
 
 The rotation operator for this pulse is  

1
180 180

0 0 0 1
0 0 1 0

            (I.73)
0 1 0 0
1 0 0 0

yAX yAXR R−−
= =

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
At time t(3) the density matrix is: 

* *
34 24

*
1 34 13

*
24 12

13 12

1 0
1 0

(3) (2)              (I.74)
0 1

0 1

B B
B B

D R D R
B B

B B

−

− −

− −
= =

− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Two important changes have been induced by the 180o pulse.  First, 
all single quantum coherences were conjugated and changed sign.  
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This means that all x-components changed sign while the y-compo-
nents remained unchanged: 
 

                                             T x yM M iM= +  

                                          *
T x yM M iM− = − +  

 

This shows, indeed, that all four vectors rotated 180o around the y-
axis.  Second, coherences corresponding to fast precessing nuclei were 
transferred in "slots" corresponding to slow evolution. This means the 
vectors also changed labels.  
 
4.5  Evolution from  t (3) to t (4) 
 
According to (I.66) and (I.74), the evolution during the second t delay 
leads to 
 

*
12 12 12 34 12(4) (3)exp( ) exp( )d d i B iτ τ= − Ω = − Ω  

           34 12( / 2)exp( )exp( )i i iτ τ= − + Ω − Ω  
           12 34( / 2)exp[ ( ) ] ( / 2)exp( 2 )i i i i Jτ π τ= − − Ω −Ω = − −  (I.75) 

13 12(4) ( / 2)exp( 2 ) (4)d i i J d Uπ τ= − − = =  (I.76) 

24 34(4) (4) ( / 2)exp( 2 )d d i i J Vπ τ= = − + =  (I.77) 
 
Hence, 

*

*

* *

1 0
1 0

(4)                         (I.78)
0 1

0 1

U U
U V

D
U V

V V

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

 
Using (I.62) we calculate the corresponding magnetization vectors: 
 

                  0zA zXM M= =

                 * *( ) cos 2TA TX o oM M M U V iM Jπ τ= = − + = −  (I.79) 
 

We see that while the chemical shifts refocused the coupling continues 
to be expressed, due to the label change. 
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4.6  The Third Pulse 
 
 We apply to D(4) the same rotation operators we used for the 
first pulse  and we obtain: 
 

1 0 0
0 1 0 0

(5)                        (I.80)
0 0 1 0

0 0 1

c is

D

is c

+ −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
where c = cos2pJt and s = sin2pJt. 
 D(5) tells us that all single-quantum coherences vanished, a 
double-quantum coherence was created and the only existing magneti-
zation is along the z-axis.  Turning to vector representation, it is seen 
that before the pulse [see(I.78)] we had magnetization components on 
both x and y axes, since U and V are complex quantities.  The vector 
description would indicate that the 90x pulse leaves the x components 
unchanged.  In reality, as seen from the DM treatment, this does not 
happen since all transverse components vanish.  
 
4.7  Evolution from  t (5) to t (6) 
 
 The double-quantum coherence element, − is, evolves accord-
ing to (I.67): 

   
*

1 0 0
0 1 0 0

(6)                         (I.81)
0 0 1 0

0 0 1

c w

D

w c

⎡ ⎤+
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦
 
where w = isexp( iW14D) = − − − isin2pJt exp( − iW14D). 
 Our interest is in the double-quantum coherence w.  In order to 
maximize it,  we select t = (2k+1)/4J where  k = integer.  Then c = 0 
and  s = sin[(2k+1)p/2] = ± 1 = (-1)k 
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With this value of t. 

   

1 0 0
0 1 0 0

(6)                              (I.82)
0 0 1 0
* 0 0 1

w

D

w

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
where w i ik= - -( ) exp( )1 14W D  
 The last expression of D(6) tells us that at this stage there is no 
magnetization at all in any of the three axes.  This would be impossi-
ble to derive from the vector representation, which also could not 
explain the reapparition of the observable magnetization components 
after the fourth pulse. 
 
4.8  The Fourth Pulse 
 
 This pulse is phase cycled, i.e., it is applied successively in 
various combinations along the x, y, − x, and − y axes. The general 
expression of the 90ΦAX operator is given in Appendix C [see(C39)]. 

  

2

90

2

1
* 1 11                       (I.83)

2 * 1 1
* * * 1

AX

a a a
a a

R
a a

a a a

Φ

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

 

 
where a = iexp( iF) and F is the angle between the x-axis and the 
direction of B1. When F takes the value 0, 90o, 180o or 270o, the pulse 
is applied on axis x, y, 

−

− x, or − y, respectively. 
 For clarity we will discuss the coupled and the noncoupled 
(isolated) carbon situations separately.  In the first case (coupled 13C 
spins), we observe that at t(6) [see(I.82)] the populations are equalized 
and all information is contained in the w elements.  
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The result of   is: 1
90 90(6)AX AXR D R−
Φ Φ

  

2

2 2

2 2

2

1 * *
1 *

(7)               (I.84)
1 *

1

a F a G a G F
aG a F a F a G

D
aG a F a F a G
F aG aG a F

⎡ ⎤+ − −
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− − +⎢ ⎥⎣ ⎦
 

where                      (I.85) 14( *) / 4 (1/ 2)( 1) sinkF w w= + = − − Ω ∆

                         14( *) / 4 (1/ 2)( 1) coskG w w= − = − − Ω ∆
 

D(7) shows that the newly created single quantum coherences contain 
the double quantum coherence information, W14.  The transverse mag-
netization is zero (fast and slow vectors are equal and opposite). A 
longitudinal magnetization proportional to sinW14 appears. None of 
these could be deduced from the vector representation.  Yet, the den-
sity matrix would allow the reader to draw the corresponding vectors. 
 To save time and space we will treat the isolated (uncoupled) 
carbons as an AX system in which A and X belong to two different 
molecules.  We can use (I.81) letting  J = 0  (c = 1; s = 0; w = 0) : 

   

2 0 0 0
0 1 0 0

'(6)                                   (I.86)
0 0 1 0
0 0 0 0

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

In this case D(7) becomes 
1 / 2 / 2 0
* / 2 1 0 / 2

'(7)                     (I.87)
* / 2 0 1 / 2
0 * / 2 * / 2 1

a a
a a

D
a a

a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

D'(7) shows only single quantum coherences and equalized popula-
tions.  The transverse magnetization of the noncoupled spins is equal 
to their equilibrium magnetization M'o (its orientation depends on the 
value of F). 
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4.9  Detection 
  
 The magnetization at t(8), due to coupled (cpl) and noncoupled 
(ncpl) nuclei can be calculated starting from the single quantum 
coherences in (I.84) and (I.87) respectively. 
 

                   12 13( ) [exp( ) exp( )T d dM cpl M i t i t= Ω + Ω  
                                               24 34exp( ) exp( )]di t i td− Ω − Ω  (I.88)   

where           0 1* ( / 2)exp( )( 1) cosk
oM M aG M i= − = − Φ − Ω ∆4

X d

 

These are the four peaks of the coupled AX system shown as a 
schematic contour plot in Figure I.9. 
  For the noncoupled carbons 
 

                   ( ) '[2exp( ) 2exp( )]T A dM ncpl M i t i t= Ω + Ω  (I.89) 
 

where          ' '' * / 2 ( / 2)exp( )o oM M a iM i= − = − − Φ  
 

These are the two peaks of the uncoupled nuclei.  Each of them is 200 
times more intense than each of the four peaks in (I.88). 
 The culminating point of INADEQUATE is the selective detec-
tion of MT(cpl).  We note that MT(cpl) and MT(ncpl) depend in 
opposite ways on F since one contains a and the other a* [cf.(I.88) 
and (I.89)].  They can be discriminated by cycling F and properly 
choosing the receiver phase Y [the detected signal S = MT exp(-iY)]. 
The table below shows that two cycles are sufficient to eliminate 
MT(ncpl). 
 

 
Cycle 

 
F 

 
Y 

ncpl 
-------------- 
expi(F-Y) 

cpl 
-------------- 
expi(-F-Y) 

1 0 0 1 1 
2 90o -90o                   -1 1 

(1+2)   0 2 
 
 Even small imperfections of the rf pulse will allow leakage of 
the strong undesired signal into the resultant spectrum.  This makes it 
necessary to apply one of several cycling patterns consisting of up to  
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256 steps, which attempt to cancel the effects of too long, too short, or 
incorrectly phased, pulses.  
 
4.10  Carbon-Carbon Connectivity 
 
 A significant extension of INADEQUATE is its adaptation for 
two-dimensional experiments.  The second time-domain (in addition 
to td) is created by making D variable.  All we have to do now is to 
discuss (I.88) and (I.89) in terms of two time variables. 
 As seen in Figure I.9, all four peaks of MT(cpl) will be aligned 
in domain D along the same frequency  W14 = WA + WX.  The great 
advantage of the 2D display consists of the fact that every pair of 
coupled carbons will exhibit its pair of doublets along its own W14 
frequency. This allows us to trace out the carbon skeleton of an 
organic molecule. 
 

WD

W d
W A

W 14

W X

-W 14

0

 
 
 

Figure I.9.  The four peaks due to a pair of coupled 13 C atoms. The 
vertical scale is twice larger than the horizontal scale. 
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 The student is invited to identify the molecule whose 2D 
spectrum is shown in Figure I.10 and to determine its carbon-
carbon connectivities.  The answer is in the footnote on page 59. 
 It should be noted that MT(ncpl) does not depend on D 
[cf.(I.81)].  This means that, when incompletely eliminated, the peaks 
of isolated carbons will be "axial" (dotted circles on the zero 
frequency line of domain ∆). 
 We also note that MT(cpl) is phase modulated with respect to td 
and amplitude modulated with respect to ∆.  Consequently, mirror-
image peaks will appear at frequencies − Ω14. This reduces the 
intensity of the displayed signals and imposes restrictions on the 
choice of the transmitter frequency, increasing the size of the data 
matrix. A modified sequence has been proposed to obtain phase 
modulation with respect to ∆, the analog of a quadrature detection in 
domain ∆. 

~~ ~~

53.1 34.2 26.0 12.1       ppm  
 

Figure I.10.  The carbon-carbon connectivity spectrum of a mo-lecule 
with  MW = 137. 
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5.  DENSITY MATRIX DESCRIPTION OF COSY  

(HOMONUCLEAR CORRELATION SPECTROSCOPY) 
 
 COSY (COrrelation SpectroscopY) is widely used, particularly 
for disentangling complicated proton spectra by proton-proton chemi-
cal shift correlation and elucidation of the coupling pattern.  Of 
course, other spin 1/2 systems such as 19F can be successfully studied 
with this 2D sequence.  The basic sequence is shown in Figure I.11.  

 
 

         

td

t(0) t(1) t(4)

90x

t(2) t(3)

90x

t e

 
 
 

Figure I.11. The Basic COSY sequence (without phase cycling): 
90x te 90x AT − − −

 
 
5.1  Equilibrium Populations 
 
 Since we deal with a homonuclear AX system, the populations 
at thermal equilibrium follow a pattern identical to that of INADE-
QUATE (see I.60 and I.61).  The initial density matrix is: 

                                   

0 0 0 0
0 1 0 0

(0)
0 0 1 0
0 0 0 2

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                     (I.90) 
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5.2  The First Pulse  
 

 Here, also, we can use the results from INADEQUATE (I.63) 
since the first pulse is a nonselective 90xAX: 

2 0
2 01(1)                           (I.91)
0 22

0 2

i i
i i

D
i i

i i

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 

 

5.3  Evolution from  t (1) to t (2) 
 

 Only nondiagonal terms are affected by evolution.  The single-
quantum coherences will evolve, each with its own angular frequency, 
leading to:  

1 0
* 1 0

(2)                        (I.92)
* 0 1

0 * * 1

A B
A C

D
B D

C D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

where                              

( ) ( )
( ) (
( ) (
( ) (

12

13

24

34

/ 2 exp

/ 2 exp

/ 2 exp

/ 2 exp

e

e

e

e

A i i t

)
)
)

B i i

C i i t

D i i t

= − − Ω

= − − Ω

= − − Ω

= − − Ω

t

R

 (I.93) 

 
5.4  The Second Pulse 
 
 To calculate , we use the rotation operators 
for the 90xAX pulse given in (I.34) 

1(3) (2)D R D−=

1

1 1 1 1
1 1 1 11 1;
1 1 1 12 2

1 1 1 1

i i i i
i i i i

R R
i i i i

i i i i

−

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

− −
− −
− −
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The postmultiplication D(2)R yields 
1 1

* 1 * 1 * *1
* 1 * 1 * *2

1 * * * * * * 1 * *

iA iB i A B i A B iA iB
i A C iA iC iA iC i A C
i B D iB iD iB iD i B D

iC iD i C D i C D iC iD

+ + + − − + − + +⎡ ⎤
⎢ ⎥+ − + + − + + − +⎢ ⎥
⎢ ⎥+ − − + + + + − +
⎢ ⎥− + + + − − + + +⎣ ⎦

 
 

We then premultiply this result by 1R−  and obtain 
 

1(3) (2)D R D R−=  
4 * * *

* * *
* * *
* * *

* 4 * * *
* * *
* * *
* * *

1
4

iA iA A A A A iA iA
iB iB B B B B iB iB
iC iC C C C C iC iC
iD iD D D D D iD iD

A A iA iA iA iA A A
B B iB iB iB iB B B
C C iC iC iC iC C C
D D iD iD iD iD D D

A

+ − + + − + + +

+ − − + + + + +

+ − + − + + − −

+ − + + + − − −

+ + − + + + + −

+ − + − − − + +

− + + − + + + +

+ + − + − − − +

=
+ − * * 4 *

* * *
* * *
* * *

* * * 4
* * * *
* * *
* * *

A iA iA iA iA A A
B B iB iB iB iB B B
C C iC iC iC iC C C
D D iD iD iD iD D D

iA iA A A A A iA iA
iB iB B B B B iB iB
iC iC C C C C iC iC
iD iD D D D D iD iD

− − + − + +

+ + + + − + + −

+ + − − − + − +

− + + + + − + +

− − − + + + − +

− − + + − + − +

+ + + + + − − +

+ + + − + + − +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎤*
*
*
*

*
*
*

*
*
*
*

*

*
*

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎦

 

 
  (I.94) 
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One can check that the population sum 11 22 33 44d d d d+ + +  (trace of 
the matrix) is invariant, i.e., it has the same value for D(0) through 
D(3).  Also, D(3) is Hermitian (the density matrix always is).  In doing 
this verification we keep in mind that the sums *A A+ , *B B+ , 
etc., are all real quantities, while the differences *A A− , *B B− , 
etc., are imaginary.  This can be used to simplify the expression of 
D(3) by employing the following notations: 
 

      ( ) ( )12 12 12( / 2) exp ( / 2) cos sine eA i i t i t i t= − − Ω = − Ω − Ω =e

)ic

 

                      12 12 12 12( / 2)( ) (1/ 2)( )i c is s ic= − − = − +
      12 12* (1/ 2)(A s= − −  
 

With similar notations for B, C, and D we obtain: 
      ( )( )12 12 12 121 2 ; * ; *A s ic A A s A A= − + + = − − = −ic  

      ( )( )13 13 13 131 2 ; * ; *B s ic B B s B B ic= − + + = − − = −  

      ( )( )24 24 24 241 2 ; * ; *C s ic C C s C C= − + + = − − = −ic (I.95) 

      ( )( )34 34 34 341 2 ; * ; *D s ic D D s D D= − + + = − − = −ic  
 

With the new sine/cosine notations, D(3) becomes: 
 

12 13 12 13 12 13 12 13

24 34 24 34 24 34 24 34

12 13 12 13 12 13 12 13

24 34 24 34 24 34 24 34

12 13 12 13 12 13

24 34 24 34 24 3

4

4

1
44

c c s ic ic s is is

c c ic s s ic is is

s ic c c is is ic s

ic s c c is is s ic

ic s is is c c

s ic is is c c

+ + − + − − −

+ + − − − − + +

− − − + − + − −

+ − + − − + − +

− − − + −

− + + − − +
12 13

4 24 34

12 13 12 13 12 13 12 13

24 34 24 34 24 34 24 34

 
  (I.96)

4

s ic

ic s

is is ic s s ic c c

is is s ic ic s c c

− −

+ −

+ − − + − −

− − − − − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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5.5  Detection 
 
 Since no other pulse follows after t(3) we will consider only the 
evolution of the observable (single quantum) elements d12, d34, d13, 
and d24 in the time domain td.  Before evolution they are (from I.96): 
 

                          ( )( )12 12 34 13 24(3) 4d i is is c c= + + + −  

                          ( )( )34 12 34 13 24(3) 4d i is is c c= + + − +  

                          ( )( )13 12 34 13 24(3) 4d i c c is is= + − + +  (I.97) 

                          ( )( )24 12 34 13 24(3) 4d i c c is is= − + + +  
 

Their complex conjugates, which are needed for the calculation of 
magnetization components, are: 
 

                         ( )( )*
12 12 34 13 24(3) 4d i is is c c= + + − +  

                         ( )( )*
34 12 34 13 24(3) 4d i is is c c= + + + −  

                         ( )( )*
13 12 34 13 24(3) 4d i c c is is= − + + +  (I.98) 

                         ( )( )*
24 12 34 13 24(3) 4d i c c is is= + − + +  

 

Each of the four matrix elements above contains all four frequencies 
evolving in domain te, namely: 12 34 13 24, , , and  .e e et t t etΩ Ω Ω Ω  
During detection, each of them will evolve with its own frequency in 
the domain td : 
 

             ( )( ) ( )*
12 12 34 13 24 12(4) 4 exp dd i is is c c i= + + − + Ω t  

             ( )( ) ( )*
34 12 34 13 24 34(4) 4 exp dd i is is c c i= + + + − Ω t  

             ( )( ) ( )*
13 12 34 13 24 13(4) 4 exp dd i c c is is i= − + + + Ω t  (I.99) 

             ( )( ) ( )*
24 12 34 13 24 24(4) 4 exp dd i c c is is i t= + − + + Ω  

 

 Expression (I.99) shows that  each td frequency is modulated by 
all four te frequencies.  Thus, we expect sixteen peaks in the 2D plot. 
Actually, there will be 32 peaks, because only the td domain is phase 
modulated, while the te domain is amplitude modulated (i.e., it 
contains sine/cosine expressions).  
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  Each sine or cosine implies both the positive and the negative 
frequency according to 

                ( ) (1cos exp exp
2jk jk e jk e jk ec t i t i t )⎡ ⎤= Ω = Ω + − Ω⎣ ⎦  

                ( ) (1sin exp exp
2jk jk e jk e jk eis i t i t i t )⎡ ⎤= Ω = Ω − − Ω⎣ ⎦  

This leads to the 32 peak contour plot in Figure I.12.  
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Figure I.12.  Contour plot of COSY without  phase cycling. The 
transmitter frequency is on one side of the spectrum.  
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 We can plot the positive frequencies only, but the amplitude 
modulation in domain te still is a major drawback since it requires 
placing the transmitter frequency outside the spectrum (i.e., we 
lose the advantage of quadrature detection in both domains).  The 
spectral widths have to be doubled and the data matrix increases by 
a factor of four. 
 If the transmitter is placed within the spectrum (e.g., between 
W12 and W24), a messy pattern is obtained as shown in Figure I.13. The 
next section shows how this can be circumvented by means of an 
appropriate phase cycling. 
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Figure I.13. Contour plot of COSY without phase cycling.  If the 
transmitter is placed within the spectrum, it causes overlap of positive 
and negative frequencies. 
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6.  COSY WITH PHASE CYCLING 
 
6.1  Comparison with the Previous Sequence 
 
 The sequence for COSY with phase cycling shown in Figure 
I.14 differs from that discussed above (Figure I.11) only by the 
cycling of the second pulse. 
 
 

td

t(0) t(1) t(4)

90

t(2) t(3)

90x

te

F

 
 

Figure  I.14.  COSY sequence with phase cycling of second pulse: 
90x te 90F AT − − −

 
 Moreover, only two steps are theoretically necessary to 
eliminate negative frequencies in domain te.  The second pulse is 
successively phased in  x and y.  Rather than doing the density matrix 
calculations for an arbitrary phase F, we will take advantage of the 
fact that we have already treated the x phase in the previous section.  
Only the effect of 90yAX must then be calculated (see Figure I.15). 
 Since the two sequences in Figures I.11 and I.15 have a 
common segment [t(0) to t(2)], we can take  D(2) from the previous 
section [see (I.92). and (I.93)]. 

                             

1 0
* 1 0

(2)
* 0 1

0 * * 1

A B
A C

D
B D

C D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (I.100) 
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td

t(0) t(1) t(4)

90y

t(2) t(3)

90x

t e

 
 
 

Figure  I.15.  The second step of the phase cycled COSY sequence: 
90x te 90y AT − − −

 
 
6.2  The Second Pulse 
 
 The rotation operator for the 90yAX pulse can be obtained by 
multiplying R90yA by R90yX.  These operators are (see Appendix C): 

90 90

1 1 0 0 1 0 1 0
1 1 0 0 0 1 0 11 1;

0 0 1 1 1 0 1 02 2
0 0 1 1 0 1 0 1

yA yXR R

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 
 
The result of the multiplication, 90 yAXR R= , is shown below together 

with its reciprocal, 1R− . 

      1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 11 1;
1 1 1 1 1 1 1 12 2

1 1 1 1 1 1 1 1

R R−

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

(I.101) 
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The postmultiplication D(2)R yields  
1 1 1 1
1 * 1 * 1 * 1 *1
1 * 1 * 1 * *2

1 * * 1 * * 1 * * 1 * *

A B A B A B A B
A C A C A C A C
B D B D B D i B D

C D C D C D C D

− − + − − + + +⎡ ⎤
⎢ ⎥− + + + − − + − + +⎢ ⎥
⎢ ⎥− + + − + − + − + +
⎢ ⎥− − − + − − − + + +⎣ ⎦

 

 
Premultiplying this result by 1R−  gives 
 
                                        1(3) (2)D R D R−= =  
 

  

4 * * *
* * *
* * *
* * *

* 4 * * *
* * *
* * *
* * *

1
* *4
* *
* *
*

A A A A A A A A
B B B B B B B B
C C C C C C C C
D D D D D D D D

A A A A A A A A
B B B B B B B B
C C C C C C C C
D D D D D D D D

A A A A
B B B B
C C C C
D D D

− − + − − − + −
− − − − + − + −
− − + + + − − +
− − + − + + − +

− + + + − + +
− − − − + − + −
+ + − − − + + −
− + + + + − − −

− − + −
− + − +
− + + −
+ + −

4 *
* *
* *

* *

* * * 4
* * *
* * *
* * *

A A A A
B B B B
C C C C

D D D D D

A A A A A A A A
B B B B B B B B
C C C C C C C C
D D D D D D D D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − + −⎢ ⎥
⎢ ⎥+ + + +
⎢ ⎥

+ + − −⎢ ⎥
⎢ ⎥+ − − + −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− + + + − + + +
⎢ ⎥
− + − + + + + +⎢ ⎥

⎢ ⎥+ − − + − − + +
⎢ ⎥
+ − − − − + + +⎢ ⎥

⎢ ⎥⎣ ⎦⎢ ⎥

*
*
*
*

*
*
*

*

*

*
*
*
*

 (I.102) 
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With the same notations as in (I.95) : 
 
      ( )( )12 12 12 121 2 ; * ; *A s ic A A s A A= − + + = − − = −ic  

      ( )( )13 13 13 131 2 ; * ; *B s ic B B s B B ic= − + + = − − = −  

      ( )( )24 24 24 241 2 ; * ; *C s ic C C s C C= − + + = − − = −ic (I.103) 

      ( )( )34 34 34 341 2 ; * ; *D s ic D D s D D= − + + = − − = −ic  
 
 
D(3) becomes 
 
 

12 13 12 13 12 13 12 13

24 34 24 34 24 34 24 34

12 13 12 13 12 13 12 13

24 34 24 34 24 34 24 34

12 13 12 13 12 13

24 34 24 34 24

4

4

1
44

s s ic s s ic ic ic

s s s ic ic s ic ic

ic s s s ic ic s ic

s ic s s ic ic ic s

s ic ic ic s s

ic s ic ic s

+ + − + + − − −

+ + − − − − + +

+ + − + + − − −

− + + − + − − +

+ + − + + −

+ − − + − +
12 13

34 24 34

12 13 12 13 12 13 12 13

24 34 24 34 24 34 24 34

  (I.104)

4

ic s

s s ic

ic ic s ic ic s s s

ic ic ic s s ic s s

− −

+ −

+ + − + + − − −

− − + + + + − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
We have to consider only the observable matrix elements :  
 

                      

( )( )
( )( )
( )( )
( )(

12 12 34 13 24

34 12 34 13 24

13 12 34 13 24

24 12 34 13 24

(3) 4

(3) 4

(3) 4

(3) 4

d i c c is is

d i c c is is

d i is is c c

d i is is c c

= − − − +

= − − + −

= − + − −

= + − − − )

 (I.105) 
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 Comparing the results for phase y (I.105) with those for phase x 
(I.97) shows that c and − is are interchanged in all terms.  This will 
lead to the desired phase modulation.  Addition of (I.97) and (I.105) 
gives 
   

( ) ( )12 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i is c is c c is c is= − + − + − + − +⎡ ⎤⎣ ⎦    

( ) ( )34 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i is c is c c is c is= − + − + − + + −⎡ ⎤⎣ ⎦

( ) ( )13 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i c is c is is c is c= − + − + + − + −⎡ ⎤⎣ ⎦  

( ) ( )24 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i c is c is is c is c= − + + − + − + −⎡ ⎤⎣ ⎦  
 

  (I.106) 
 
The complex conjugates of the matrix elements above (needed for the 
expression of the magnetization components) are 
 

 ( ) ( )*
12 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i is c is c c is c is= + + + + − − + +⎡ ⎤⎣ ⎦  

( ) ( )*
34 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i is c is c c is c is= + + + + + + − −⎡ ⎤⎣ ⎦  

( ) ( )*
13 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i c is c is is c is c= − − + + + + + +⎡ ⎤⎣ ⎦  

( ) ( )*
24 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i c is c is is c is c= + + − − + + + +⎡ ⎤⎣ ⎦  

 

  (I.107) 
 
We observe that every parenthesis represents an exponential, therefore 
we can use the notation 
                                  ( )expjk jk jk jk ee c is i t= + = Ω  (I.108) 

 
With this notation (I.107) becomes 
 

                           ( )( )*
12 12 34 13 24(3) 4d i e e e e= + + − +  

                           ( )( )*
34 12 34 13 24(3) 4d i e e e e= + + + −  

                           ( )( )*
13 12 34 13 24(3) 4d i e e e e= − + + +  (I.109) 

                           ( )( )*
24 12 34 13 24(3) 4d i e e e e= + − + +  



 
 
 
 
 
 
 

COSY     57 

 The reader is reminded that the above expressions represent the 
summation from two acquisitions, one with phase x and the other with 
phase y for the second pulse.  Instead of sines or cosines, they contain 
only exponentials.  In other words we have achieved phase modula-
tion in the domain te. 
 
6.3  Detection 
 
 The evolution during td is identical for the two acquisitions, 
therefore we can apply it after the summation (in I.109). 
 

                ( )( ) ( )*
12 12 34 13 24 12(4) 4 exp dd i e e e e i= + + − + Ω t  

                ( )( ) ( )*
34 12 34 13 24 34(4) 4 exp dd i e e e e i= + + + − Ω t  

                ( )( ) ( )*
13 12 34 13 24 13(4) 4 exp dd i e e e e i= − + + + Ω t  (I.110) 

                ( )( ) ( )*
24 12 34 13 24 24(4) 4 exp dd i e e e e i t= + − + + Ω  

 
 The expressions (I.110) correspond to a contour plot with 16 
peaks, as represented in Figure I.16.  This pattern is no longer depend-
ent on the position of the transmitter since we have achieved the 
equivalent of quadrature detection in both domains.  There are four 
diagonal terms, each having the same frequency in both domains te 
and td.  If the two frequencies differ only by J (e.g., we have W12 in 
domain te and W34 in domain td) we have a "near-diagonal" peak. There 
are four such peaks.  The remaining eight are referred to as off-
diagonal or cross-peaks and their presence indicates that spins A and 
X are coupled.  Two noncoupled spins will exhibit only diagonal 
peaks.  We can verify that this is so by discussing what happens if J 
becomes vanishingly small.  In this case W12 = W34 = WA (center of the 
doublet); likewise W13 = W24 = WX.  Therefore each group of 4 peaks in 
Figure I.16 collapses into a single peak in the center of the 
corresponding square.  The diagonal and near-diagonal peaks of 
nucleus A are all positive and they collapse into one diagonal peak, 
four times larger.  The same is true for nucleus X.  The off-diagonal 
peaks come in groups of four, two positive and two negative.  When 
they collapse (J=0) they cancel each other and there will be no off-
diagonal peak.  The net result is a spectrum with just two peaks, both 
on the diagonal,  with frequencies  WA  and  WX.  The above discussion  
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shows that COSY is not suited for spectra with ill-resolved multiplets 
because there will be destructive overlap in the off-diagonal groups. 
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34
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Figure I.16.  Contour plot of COSY with phase cycling.  Open circles 
are positive peaks; shaded circles are negative peaks. 
 
 

 There is one more observation.  It is common practice to plot 
the 2D spectra in the "magnitude calculation" (MC) or "absolute 
value" mode, to avoid phasing problems.  The magnitude calculation 
(the absolute value of a complex quantity) is performed by the 
computer after Fourier transform in both domains.  Two peaks, one 
positive and one negative, will both become positive in MC, provided 
they are well resolved.  If they are ill-resolved, they will cancel each 
other partially and will yield a much smaller signal.  The MC is 
applied to this signal and it cannot represent the original amplitude of 
the two peaks.  Therefore  the use of magnitude calculation does not 
provide a solution for poorly resolved multiplets.  
 One word about the utility of phase cycling.  While it is well 
known that this procedure helps canceling out radiofrequency 
interferences and pulse imperfections, we have just seen that it can be  
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useful for other purposes.  In INADEQUATE it helps eliminate the 
NMR signal from the 13C-12C pairs while preserving that from 13C-13C 
pairs.  In COSY it helps achieve phase modulation in domain te.  In 
both cases a two step cycling is theoretically sufficient.  However, to 
efficiently compensate for hardware imperfections, cycling in more 
than two steps is generally employed. 
 
 

7. CONCLUSION OF PART I 
 
 The density matrix approach described above constitutes a very 
clear and useful means for understanding the multipulse sequences of 
modern NMR.  The limitation of this approach is the rapidly 
increasing volume of calculation with increasing number of nuclei.  
The size of the matrix goes from 16 elements for a two spin 1/2 system 
to 64 and 256 elements for three and four spin systems, respectively. 
 We must therefore resort to an avenue which affords a 
"shorthand" for the description of rotations and evolutions. The new 
avenue we present in the second part of this monograph is the product 
operator formalism. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
________________________________________________________ 
Answer to the problem on page 44: The contour plot in Figure I.10 is the 
carbon-carbon connectivity spectrum of 2-bromobutane. 
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2 

The Product Operator Formalism 
 
 
 
 

1.  INTRODUCTION 
 
 In this section we will see that the density matrix at equilibrium 
can be expressed in terms of the spin angular momentum component Iz 
of each nucleus.  Moreover, effects of pulses (rotations) and evolu-
tions of noncoupled spins can also be described in terms of angular 
momentum components (Ix,Iy,Iz).  However, in order to express evolu-
tions of coupled spins, we will need additional "building blocks" 
besides angular momentum components.  We will thus introduce a 
"basis set" which is composed of "product operators."  The latter are 
either products between angular momentum components or products 
of angular momentum components with the unit matrix.  We will 
describe this approach and will apply it to several pulse sequences, 
beginning with 2DHETCOR.  

 
2.  EXPRESSING THE DENSITY MATRIX IN TERMS  

OF ANGULAR MOMENTUM COMPONENTS 
 
 We start with the same procedure of describing the density 
matrix at equilibrium, D(0), as in Part I.  In order to generalize the 
approach to an AX (not only a CH) system we preserve separate 
Boltzman factors,  1 + p  and  1 + q, for nuclei A and X, respectively 
[see (I.3-5)]: 
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1 0 0 0
0 1 0 01(0)           (II.1)
0 0 1 0
0 0 0 1

p
D

qN
p q

⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥+
⎢ ⎥+ +⎣ ⎦

 

 
N is the number of states (4 for an AX system). 
 As we did in Part I, we separate the unit matrix from the matrix 
representing population differences.  However, here we choose as a 
factor for the unit matrix the average population (1+p/2+q/2)/N:  

                   
1 / 2 / 2(0) p qD

N
+

⎡ ⎤
⎢ ⎥

+ ⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 

   

/ 2 / 2 0 0 0
0 / 2 / 2 0 01
0 0 / 2 / 2 0
0 0 0 / 2

p q
p q

p qN
p q

− −⎡ ⎤
⎢ ⎥−⎢ ⎥+
⎢ ⎥− +
⎢ ⎥+⎣ ⎦/ 2

 

 
(II.2) 

 
Again, we ignore the term containing the unit matrix which does not 
contribute to magnetization. 

/ 2 / 2 0 0 0
0 / 2 / 2 0 01(0)
0 0 / 2 / 2 0
0 0 0 / 2

p q
p q

D
p qN

p q

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− +
⎢ ⎥+⎣ ⎦/ 2

 
 

(II.3) 
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Separation of the p and q terms gives 
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0

(0)      (II.4)
0 0 1 0 0 0 1 02 2
0 0 0 1 0 0 0 1

p qD
N N

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= − −
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 
 
We recognize in the first term the angular momentum component IzA 
and, in the second term, IzX [see (C13) and (C15)].  We note that the 
signs of the magnetic quantum numbers are in the same order as in 
Figure I.1 of Part I.  We can now write D(0) in shorthand: 
 

                                     (0) zA zX
p qD I
N N

= − − I  (II.5) 

 
 

3.  DESCRIBING THE EFFECT OF A PULSE 
 IN TERMS OF ANGULAR MOMENTA  

 
 The rotation operator for a 90o pulse along the x-axis on nucleus 
X is: 

90

1 0 0
0 1 01                             (see I.9)

0 1 02
0 0 1

xX

i
i

R
i

i

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
Its reciprocal is: 

1
90

1 0 0
0 1 01                       (see I.10)

0 1 02
0 0 1

xX

i
i

R
i

i

−

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦
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We postmultiply D(0) from (II.3) with R90xX (R, for brevity). 
0 0 0 1 0

0 0 0 0 11 1(0)
0 0 0 0 12 2
0 0 0 0 0

p q i 0
0

0
1

p q i
D R

p q iN
p q i

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− +
⎢ ⎥+⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
0 0

0 01      (II.6)
0 02 2        

0 0

p q ip iq
p q ip iq

ip iq p qN
ip iq p q

− − − −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− + − +
⎢ ⎥+ +⎣ ⎦

 

 
We now premultiply this result by R-1 
 
D(1) = R-1[D(0) R] 

1
4

1 0 0 0 0
0 1 0 0 0

0 1 0 0 0
0 0 1 0 0

N

i p q ip iq
i p q ip

i ip iq p q
i ip iq

− − − − −⎡ ⎤ ⎡
⎢ ⎥ ⎢− −⎢ ⎥ ⎢=
⎢ ⎥ ⎢− − + − +
⎢ ⎥ ⎢− +⎣ ⎦ ⎣

iq

p q

⎤
⎥− ⎥
⎥
⎥+ ⎦

 

 

(II.7)

2 0 2 0 0 0
0 2 0 2 0 01 1  

2 0 2 0 0 04 2
0 2 0 2 0 0

p iq p iq
p iq p iq

iq p iq pN N
iq p iq p

− − − −⎡ ⎤ ⎡
⎢ ⎥ ⎢− −⎢ ⎥ ⎢= =
⎢ ⎥ ⎢− −
⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

 
 
Separation of p and q yields  

1 0 0 0 0 0 0
0 1 0 0 0 0 0

(1)            (II.8)
0 0 1 0 0 0 02 2
0 0 0 1 0 0 0

i
ip qD

iN N
i

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −− ⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
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 Comparing the result with (C13) and (C14) we recognize IzA 
and IyX and we can write   

                                      (1) zA yX
p qD I

N N
I−

= +  (II.9) 

 
 Relations (II.5) and (II.9) open the way toward the product 
operator formalism.  We succeeded in writing D(0) and D(1) in angu-
lar momentum shorthand.  Moreover, we foresee the possibility of ob-
taining the result of pulses  without matrix calculations; this can be 
seen by simply representing the angular momenta in their vector form, 
as in Figure II.1.  
 
 

   

90xX

z

y

x

z

y

x

-(q/N)IzX

-(p/N)IzA

-(p/N)IzA

(q/N)I yX

 
   
 
   ( / ) ( / )zA zXp N I q N I− −           90xX⎯⎯⎯→ ( / ) ( / )zA yXp N I q N I− +  
 
 

Figure II.1.  Effect of the 90xX pulse. 
 

 
We note that, because of our convention to take gamma as negative 
(see Appendix J) the angular momentum vector orientation is opposite 
to that of the magnetization vector which was used in Part I. 
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4.  AN UNSUCCESSFUL ATTEMPT TO DESCRIBE A 
COUPLED EVOLUTION IN TERMS OF ANGULAR 

MOMENTA  
 
 Let us calculate the result of a coupled evolution of duration te/2 
starting from D(1).  Applying (I.13) to D(1) in (II.7) gives: 

0 0
0 01(2)                          (II.10)
* 0 02

0 * 0

p F
p G

D
F pN

G p

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 

where 
                                     13exp( / 2)eF iq i t= − − Ω  
                                     24exp( / 2)eG iq i t= − − Ω   (II.11) 
With the notations 
                                              13 X JπΩ = Ω +  
                                              24 X JπΩ = Ω −  (II.12) 
 

the exponentials in (II.11) become 
       13exp( / 2) exp[ ( ) / 2]e Xi t i J teπ− Ω = − Ω +  
                                  exp( / 2)exp( / 2)X e ei t i Jtπ= − Ω −  (II.13) 
       24exp( / 2) exp[ ( ) / 2]e Xi t i J teπ− Ω = − Ω −  
                                  exp( / 2)exp( / 2)X e ei t i Jtπ= − Ω +  
 

We make now the following notations: 
                            cos / 2 sin / 2X e X ec t s t= Ω = Ω
                           cos / 2 sin / 2eC Jt S Jteπ π= =  (II.14) 
 

Note that here c and s have different meanings than the ones assigned 
in Part I (I.31).  To make sure, c and s (lower case) represent effects of 
chemical shift and C and S (upper case) represent effects of J-
coupling.  Now the exponentials in (II.11) can be written as: 
 

                             13exp( / 2) ( )( )ei t c is C iS− Ω = − −  (II.15) 
                             24exp( / 2) ( )( )ei t c is C iS− Ω = − +  
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Then F and G become 
 

                 ( )( ) ( ) (F iq c is C iS iq cC sS q sC cS= − − − = − − − + )
)                (II.16) ( )( ) ( ) (G iq c is C iS iq cC sS q sC cS= − − + = − + − −

 

and we can rewrite D(2) as   
( )

0 0
( )

( )
0 0

( )1
( )2

0 0
( )

( )
0 0

( )

iq cC sS
p

q sC cS
iq cC sS

p
q sC cS

iq cC sSN
p

q sC cS
iq cC sS

p
q sC cS

− −⎡ ⎤
−⎢ ⎥− +⎢ ⎥

⎢ ⎥− +
⎢ ⎥− −⎢ ⎥
⎢ ⎥−

−⎢ ⎥
− +⎢ ⎥

⎢ ⎥+
⎢ ⎥

− −⎢ ⎥⎣ ⎦
 
 

(II.17) 
We separate D(2) into five matrices containing the factors p, qcC, qsS, 
qsC, and qcS: 
 

1 0 0 0 0 0 0
0 1 0 0 0 0 0

(2)
0 0 1 0 0 0 02 2
0 0 0 1 0 0 0

i
ip qD cC

iN N
i

−⎡ ⎤ ⎡
⎢ ⎥ ⎢− −⎢ ⎥ ⎢= − +
⎢ ⎥ ⎢
⎢ ⎥ ⎢−⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

 

 

          

0 0 0 0 0 1 0
0 0 0 0 0 0 1

0 0 0 1 0 0 02 2
0 0 0 0 1 0

i
iq qsS sC

iN N
i

−⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢− −
⎢ ⎥ ⎢
⎢ ⎥ ⎢−⎣ ⎦ ⎣ 0

⎤
⎥
⎥
⎥
⎥
⎦

 

 

 

0 0 1 0
0 0 0 1

                    (II.18)
1 0 0 02
0 1 0 0

q cS
N

⎡ ⎤
⎢ ⎥−⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦
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In (II.18) only three terms, the first, second, and fourth, contain 
angular momenta [cf.(C12-C15)].  The first term is − (p/N)IzA, the 
second is (q/N)cCIyX and the fourth is − (q/N)sCIxX.  The third and 
fifth matrices in (II.18) contain neither angular momenta nor a linear 
combination of the six components (IxA, IyA, IzA, IxX, IyX, IzX) known to 
us.  This shows that the six angular momentum components shown in 
parenthesis are not sufficient to express the density matrix after a 
coupled evolution.  In other words they constitute an incomplete set of 
operators.  We will see in the next section how we can put together a 
complete (basis) set which will allow us to treat coupled evolutions in 
a shorthand similar to that used for D(0) and D(1).  We may use as an 
analogy the blocks a child would need to build any number of castles 
of different shapes given in a catalog.  For a given castle the child may 
not need to use all the building blocks, but he knows that none of the 
castles would require a block he does not have. 
 

5.  PRODUCT OPERATORS (PO)  
 
 We will call each building block a basis operator and will give 
in Table II.1 a complete set of such operators for the  AX system. The 
bracket notations proposed by us will be defined as we explain  how 
this set was put together. 
 

Table II.1  Basis Operators for 2 Nuclei (I = 1/2) 
 

  

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0

[11] [ 1]
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

z

⎡ ⎤ ⎡
⎢ ⎥ ⎢ −⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢ −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

  

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0

[1 ] [ ]
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

z zz

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
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0 1 0 0 0 0 0
1 0 0 0 0 0 0

[ 1] [ 1]
0 0 0 1 0 0 0
0 0 1 0 0 0 0

i
i

x y
i

i

−⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢ −
⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦
⎤
⎥
⎥
⎥
⎥
⎦
⎤
⎥
⎥
⎥
⎥
⎦

0

  

0 1 0 0 0 0 0
1 0 0 0 0 0 0

[ ] [ ]
0 0 0 1 0 0 0
0 0 1 0 0 0 0

i
i

xz yz
i

i

−⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢−
⎢ ⎥ ⎢− −⎣ ⎦ ⎣

  

0 0 1 0 0 0 0
0 0 0 1 0 0 0

[1 ] [1 ]
1 0 0 0 0 0 0
0 1 0 0 0 0 0

i
i

x y
i

i

−⎡ ⎤ ⎡
⎢ ⎥ ⎢ −⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣

  

0 0 1 0 0 0 0
0 0 0 1 0 0 0

[ ] [ ]
1 0 0 0 0 0 0
0 1 0 0 0 0 0

i
i

zx zy
i

i

−⎡ ⎤ ⎡
⎢ ⎥ ⎢−⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢− −⎣ ⎦ ⎣

  

0 0 0 1 0 0 0
0 0 1 0 0 0 0

[ ] [ ]
0 1 0 0 0 0 0
1 0 0 0 0 0 0

i
i

xx xy
i

i

−⎡ ⎤ ⎡
⎢ ⎥ ⎢ −⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣

 

0 0 0 0 0 0 1
0 0 0 0 0 1 0

[ ] [ ]
0 0 0 0 1 0

0 0 0 1 0 0 0

i
i

yx yy
i

i

− −⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢−
⎢ ⎥ ⎢−⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

 

 

These product operators have been introduced by Ernst and coworkers 
(see O.W.Sörensen, G.W.Eich, M.H.Levitt, G.Bodenhausen, and 
R.R.Ernst in Progress in NMR Spectroscopy, 16, 1983, 163-192, and  
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references cited therein).  The operators we use are multiplied by a 
factor of 2 in order to avoid writing 1/2 so many times. 
 Each basis operator is a product of two factors, one for each of 
the two nuclei (hence, the name "product operator").  The factor cor-
responding to a given nucleus may be one of its own angular  
momentum components multiplied by two (2Ix, 2Iy, 2Iz) or the unit 
matrix.  
 For example in the product operator [zz] the first factor is 2IzA 
and the second, 2IzX.  Proof: 
 

       

1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥× =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

        2 2zA zX [ ]I I zz× =  (II.19) 
 
Another example: 

[ ]

0 1 0 0
1 0 0 0

[ 1] 2 2
0 0 0 1
0 0 1 0

xA xAx I I

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⋅ = =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 (II.20)

 

 
 

The basis set in Table II.1 allows us now to write (II.18) in shorthand 
because we recognize that the third term in (II.18) contains the 
product operator [zy] and the fifth term contains [zx]. Thus, 
 

(2) ( 2 )[ 1] ( / 2 ) [1 ] ( / 2 ) [ ]D p N z q N cC y q N sS= − + − zy  
                      ( / 2 ) [1 ] ( / 2 ) [ ]q N sC x q N cS zx− −  (II.21) 
 
If we were to continue now to transform into product operators (PO) 
all the subsequent density matrices of HETCOR we would, of course, 
be able to do it, but this would do us no good.  The real advantage will 
consist in finding a way to go from one PO to the next PO  
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without using matrices.  There is a small price to pay for this 
advantage, namely learning a few rules which show how to obtain a 
new PO representation after pulses or evolutions.  It will be seen later 
that the PO advantage is much more important when we have to 
handle systems of more than two spins. 
 
 

6.  PULSE EFFECTS (ROTATIONS) IN THE  
PRODUCT OPERATOR FORMALISM 

 
 The great advantage of expressing the density matrix in terms 
of product operators is found in the dramatic simplification of 
calculations needed to describe pulse effects (rotations).  Let us illus-
trate this by a few examples. 
 
(1) 90xX pulse applied to D(0): 
 

90( / 2 )[ 1] ( / 2 )[1 ] ( / 2 )[ 1] ( / 2 )[1 ]xXp N z q N z p N z q N y− − ⎯⎯⎯→− +  
 

                      D(0)                                                        D(1) 
 
This PO operation can be readily visualized in vector representation. 
Indeed, looking at Figure II.2a we see that, while the angular 
momentum of X moves from − z  to  + y  (90o rotation), the vector of 
A remains unaffected.  
 Let the vector representation guide us now to write another PO 
operation (see Figure II.2b). 
 
(2) 90xA pulse applied to D(0): 
 

90( / 2 )[ 1] ( / 2 )[1 ] ( / 2 )[ 1] ( / 2 )[1 ]xAp N z q N z p N y q N z− − ⎯⎯⎯→+ −  
 

                       D(0)                                                        D(1) 
 
 By following the same procedure in examples 3 to 5 we find out 
that the product operators after any rotation can be written by 
changing the labels x,y,z, of the affected nucleus according to the 
rotation which took place in the vector representation.  Of course, the 
unit matrix (label "1") always stays the same. 
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(3) 90yAX (nonselective) pulse applied to D(0): 
 

90( / 2 )[ 1] ( / 2 )[1 ] ( / 2 )[ 1] ( / 2 )[1 ]yAXp N z q N z p N x q N x− − ⎯⎯⎯→− −  

                       D(0)                                                        D(1) 
 
(4) 90xA applied to D(1) above: 
 

90( / 2 )[ 1] ( / 2 )[1 ] ( / 2 )[ 1] ( / 2 )[1 ]xAp N x q N x p N x q N x− − ⎯⎯⎯→− −  
  
(No change, whatsoever) 
 
(5) 90yA applied to D(1) above: 
 

90( / 2 )[ 1) ( / 2 )[1 ] ( / 2 )[ 1] ( / 2 )[1 ]yAp N x q N x p N z q N x− − ⎯⎯⎯→+ −  
 
The validity of this approach is demonstrated in Appendix E. 
 Many pulse sequences contain rotations other than 90o or 180o. 
We now proceed to apply our vector rule for an arbitrary angle a (see 
Figure II.2c).  The PO representation of this rotation is 

( / 2 )[ 1] ( / 2 )[1 ] ( / 2 )[ 1]
( / 2 )([1 ]cos [1 ]sin )

xXp N z q N z p N z
q N z y

α

α α
− − ⎯⎯⎯→−

− −
 
 
 A few more examples of rotations are given below.  This time 
we ignore the factors  p/2N  or  q/2N. 
 
                                     90[ ] [ ]yAzz xz⎯⎯⎯→
 

                                     
90[ ] [ ]yXzz zx⎯⎯⎯→

 

                                     90[ ] [ ]xAzz yz⎯⎯⎯→−
 

                                    180[ ] [ ]yAxy x⎯⎯⎯→− y  
 

                                     90[1 ] [1 ]xAy y⎯⎯⎯→
 

                                    [ ] [ ]cos [ ]sinyAzz zz xzα α α⎯⎯⎯→ +  
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90xX

z

y

x

z

y

x

x

y

z

x

y

z

90xA

-(p/2N)[z1]

-(q/2N)[1z]

-(p/2N)[z1]

+(q/2N)[1y]

-(p/2N)[z1]

-(q/2N)[1z]

+(p/2N)[y1]

-(q/2N)[1z]

-(p/2N)[z1]

-(q/2N)[1z]cosa
+(q/2N)[1y]sina

-(p/2N)[z1]

-(q/2N)[1z]

axX

z

y

x

z

y

x a

a

b

c

A

X

A

X

A

X X

X

XA A

A

 
 
 

Figure II.2.  PO and vector representation of rotations. 
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 It must be mentioned at this time that only POs containing x, y, 
or z for one spin and 1 for the other(s) represent magnetization 
components along the corresponding Cartesian axes and have a vector 
representation.  Nevertheless, the rotation applied to all other POs can 
be treated in the same way as above, by considering separately each 
factor in the product. 
 The great advantage over the density matrix formalism is that 
we can apply this approach to systems larger than two spins without 
the considerable increase in the computation volume (for CH3 the 
matrix is 16x16, i.e., it has 256 elements).  In an AMX system (three 
spin 1/2 nuclei): 
                                      90[ ] [yAzzz xzz⎯⎯⎯→ ]
                                        AMX 
 

                                       180[ ] [ ]xMxzz xzz⎯⎯⎯→−  
 
                                                  

180[ ] [xA ]xzz xzz− ⎯⎯⎯→−  
 
 Nonselective pulses affect more than one nucleus in the system. 
For example: 
 
                                          90[ ] [ ]xAXzz yy⎯⎯⎯→
 
                                         90[ ] [ ]xAXxz x⎯⎯⎯→− y

]

 
   
                                         90[ ] [yAMzzz xxz⎯⎯⎯→
 
 For rotations a other than 90o or 180o, nonselective pulses 
affecting n nuclei must be handled in n successive operations.  For 
instance, a nonselective pulse axAX applied to the product operator 
[zy] is treated in the following sequence: 
 
[ ] [ ]cos [ ]sinxAzy zy yyα α α⎯⎯⎯→ −  

2 2[ ]cos [ ]cos sin [ ]sin cos [ ]sinxX zy zz yy yzα α α α α α⎯⎯⎯→ + − − α  
 
These two operations may be performed in any order. 
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7.  TREATMENT OF EVOLUTIONS IN THE  
PRODUCT OPERATOR FORMALISM 

 
 As shown in Appendix F, the evolution of coupled spins is 
conveniently treated in two steps.  Step 1: we consider the system 
noncoupled (chemical shift evolution only).  Step 2: we calculate the 
effect of coupling.  
 
 Step 1 (shift evolution) 
 A shift evolution is equivalent to a rotation about the z axis by 
an angle a = Wt.  Example: 
 

                    shift A[ 1] [ 1]cos [ 1]sinA Ax x t y⎯⎯⎯→ Ω + Ω t  
 
The analogy with the vector representation is shown in Fig. II.3. 
 

  

x    x

y y

shift A
evolution

a

D=[x1] D=[x1] cosa + [y1] sina

  

 
 

Figure II.3.  PO and vector representation of a coupled evolution. 
The angle  a = WAt. 

 
Another example:  
 

                       shift X[ ] [ ]cos [ ]sinX Xzy zy t zx t⎯⎯⎯→ Ω − Ω  
 
The rule of thumb for shift evolution is :  
 

 PO after evolution = (PO before evolution) cosWt + (PO before 
evolution in which x is replaced by y and y by − x for the spin 
affected by evolution) sinWt.  The labels 1 and z are invariant. 
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 If more than one nucleus in the system is subject to shift 
evolution, these evolutions have to be treated as separate steps (the 
order is immaterial). Example: 
 

           shift A[ ] [ ]cos [ ]sinA Axyz xyz t yyz t⎯⎯⎯→ Ω + Ω

M

 
                    AMX 

          
shift M [ ]cos cos [ ]cos sin

[ ]sin cos [ ]sin sin
A M A

A M A M

xyz t t xxz t t
yyz t t yxz t t

⎯⎯⎯→ Ω Ω − Ω Ω
+ Ω Ω − Ω Ω

 (II.22) 

 
The X spin is represented by z in the POs.  Therefore the "shift X" 
does not bring any further change in (II.22). 
 
With the notations  

                (II.23) 
cos cos ' cos "
sin sin ' sin "

A M

A M

t c t c t c
t s t s t s

Ω = Ω = Ω =
Ω = Ω = Ω =

X

X

]

 
the relation (II.22) becomes   
 

      shift A, M, X[ ] '[ ] '[ ] '[ ] '[xyz cc xyz cs xxz sc yyz ss yxz⎯⎯⎯⎯⎯→ − + −  
 
One more example : 
 

shift A[ ] [ ] [ ]xyy c xyy s yyy⎯⎯⎯→ +  
shift M '[ ] '[ ] '[ ] '[ ]cc xyy cs xxy sc yyy ss yxy⎯⎯⎯→ − + −  

shift X ' "[ ] ' "[ ] ' "[ ] ' "[
' "[ ] ' "[ ] ' "[ ] ' "[ ]

cc c xyy cc s xyx cs c xxy cs s xxx]
sc c yyy sc s yyx ss c yxy ss s yxx

⎯⎯⎯→ − − +
+ − − +

 

 
 Step 2 (J coupling evolution) 
 According to the rules presented in Appendix F the coupling 
between two spins is active only when one of the nuclei appears in the 
PO with an x or y while the other nucleus is represented by z or 1. 
Examples : 
 

[xzz] couplings JAM and JAX are active, but JMX is not. −
               AMX 

 

[xyz] couplings JAX and JMX are active, but JAM is not. −
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Another example: 
 

[xyy] no coupling is active − 1
 

For every coupling that is active, the step 2 rule is:  
PO after evolution = (PO before evolution) cospJt + (PO before 
evolution with x replaced by y, y by − x, 1 by z,and z by 1) sinpJt. 
 Examples: 

 [ ] [ ] [ 1]AXJxz C xz S⎯⎯⎯→ + y
t
t

         with         
cos
sin

AX

AX

C J
S J

π
π

=
=

 

 [ ] [ ] [ 1AXJ ]xyz C xyz S yy⎯⎯⎯→ +  
  '[ ] '[ 1] '[ 1] '[ ]MXJ CC xyz CS xx SC yy SS yxz⎯⎯⎯→ − + −

 where        
cos
sin

AX

AX

C J
S J

t
t

π
π

=
=

        
' cos

' sin
AM

AM

C J
S J

t
t

π
π

=
=

 

Combinations of steps 1 and 2 are illustrated by two examples. 
 System AM       [x1]  shift A [ 1] [ 1]c x s y⎯⎯⎯→ +

  (II.24) [ 1] [ ] [ 1] [ ]AMJ cC x cS yz sC y sS xz⎯⎯⎯→ + + −

 System AMX     shift A[ 11] [ 11] [ 11]x c x s y⎯⎯⎯→ +  
  [ 11] [ 1] [ 11] [ 1]AMJ cC x cS yz sC y sS xz⎯⎯⎯→ + + −

  '[ 11] '[ 1 ] '[ 1] '[ ]AXJ cCC x cCS y z cSC yz cSS xzz⎯⎯⎯→ + + −
 '[ 11] '[ 1 ] '[ 1] '[ ]sCC y sCS x z sSC xz sSS yzz+ − − −  (II.25) 
Notations for the last two examples: 

cos cos ' cos
sin sin ' sin

A AM

A AM

c t C J t C J AX

AX

t
s t S J t S J
= Ω = =
= Ω = = t

                                                          

 (II.26) 

 We notice that, in the case of the two spin system, a coupled 
evolution does not split any PO into more than 4 terms.  This is due to 
the fact that when both shifts are active the coupling is not.  

 
1 This seemingly surprising situation prompts an explanation.  Product 
operators as [xx], [xy], [xyy] have nonvanishing elements on the secondary 
diagonal only (which represents zero- and multiple-quantum coherences). 
Referring to Figure I.1 we see that the evolution frequency for the double- 
quantum transition (1→  4) is (A+J/2)+(X-J/2) = X+A. The zero-quantum 
transition frequency (2 3) is X-A. None of them depends on J. →
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8.  REFOCUSING ROUTINES 
 
 We have seen in the 2DHETCOR section that the 180xC pulse 
caused the decoupling of carbon from proton.  In other words, the 
pulse applied in the middle of the evolution time te, caused the second 
half to compensate for the coupling effect of the first half.  We call 
this a "refocusing routine."  The chemical shift evolution can also be 
refocused if the pulse is applied on the nucleus that evolves.  The 
routine, as shown below, can be handled in the conventional way 
(evolution-pulse-evolution) but the partial results are fairly more 
complicated than the final result.  

                                D/2     D/2  

180

 
 
 We suggest here an efficient calculation shortcut in which the 
entire evolution time, D, can be placed either before or after the pulse 
(of course, this cannot be done in the actual sequence). 
 

 

          

180 180

D D  
 
During the hypothetical delay, D, the following rules apply: 
 a) Only shifts of the nuclei not affected by the 180o pulse are 
taken into account in the evolution D since all other are refocused. 
 b) The coupling between two nuclei is active if both or none 
of them are affected by the 180o pulse. 
 The above rules are valid for systems of m spin 1/2 nuclei, part 
of which may be magnetically equivalent.  The 180o rotation is 
supposed to occur about an axis in the xy plane (no off-resonance 
pulse).  The phase of the pulse does not affect the validity of the rules 
but it must be conserved when, in our calculations, we move the pulse 
from the middle of the interval D to one of its ends.  The rules above 
are demonstrated in Appendix H.   



 
 
 
 
 
 
 
78     Product  Operator Treatment 

 We now compare the conventional calculation with the short-
cut.  For example, we assume that the density matrix at time t(n) is  
 

 

( ) '[ 1] '[1 ]D n p x q x= +  
and it is followed by 
 

/ 2 180 / 2xA∆ − −∆  
 

 In the conventional way, i.e., evolution − pulse − evolution, 
we start with the first evolution, D/2. 
 

( ) ' [ 1] ' [ 1] '[1 ]shift AD n p c x p s y q⎯⎯⎯→ + + x  
' [ 1] ' [ 1] ' '[1 ] ' '[1 ]shift X p c x p s y q c x q s y⎯⎯⎯→ + + +  

' [ 1] ' [ ] ' [ 1] ' [J ]p cC x p cS yz p sC y p sS xz⎯⎯→ + + −  
' ' [1 ] ' ' [ ] ' ' [1 ] ' ' [ ] ( 1)q c C x q c S zy q s C y q s S zx D n+ + + − = +

J

 
 

where 
cos / 2 ' cos / 2 cos / 2A Xc c C π= Ω ∆ = Ω ∆ = ∆  
sin / 2 ' sin / 2 sin / 2A Xs s S Jπ= Ω ∆ = Ω ∆ = ∆  

 

The 180xA pulse affects only the first label in the POs (nucleus A), 
changing the sign of y and z and leaving x unchanged. 
 

180( 1) ' [ 1] ' [ ] ' [ 1] ' [xA ]D n p cC x p cS yz p sC y p sS xz+ ⎯⎯⎯→ − − −  
' ' [1 ] ' ' [ ] ' ' [1 ] ' ' [ ] ( 2)q c C x q c S zy q s C y q s S zx D n+ − + + = +

]

 
 

The second evolution D/2 is calculated as follows 
 

2 2( 2) ' [ 1] ' [ 1] ' [ ] ' [shift AD n p c C x p csC y p c S yz p csS xz+ ⎯⎯⎯→ + − +  
2 2' [ 1] ' [ 1] ' [ ] ' [ ]p scC y p s C x p scS xz p s S yz− + − −  

' ' [1 ] ' ' [ ] ' ' [1 ] ' ' [ ]q c C x q c S zy q s C y q s S zx+ − + +  
2 2' [ 1] ' [ 1] ' [ ] ' [ ]shift X p c C x p csC y p c S yz p csS xz⎯⎯⎯→ + − +  

2 2' [ 1] ' [ 1] ' [ ] ' [ ]p scC y p s C x p scS xz p s S yz− + − −  
2 2' ' [1 ] ' ' ' [1 ] ' ' [ ] ' ' ' [ ]q c C x q c s C y q c S zy q c s S zx+ + − +  

2 2' ' ' [1 ] ' ' [1 ] ' ' ' [ ] ' ' [ ] ( )q s c C y q s C x q s c S zx q s S zy D+ − + + = int  
 

This is an intermediate result, since we still have to consider the effect 
of J-coupling.  Before doing so, we combine the terms containing the  
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same PO. 
 

2 2 2 2( ) '( ) [ 1] '( ) [ ]D p c s C x p c s S yz= + − +int  
2 2'( ' ' ) [1 ] 2 ' ' ' [1 ]q c s C x q c s C y+ − +  
2 2'( ' ' ) [ ] 2 ' ' ' [ ]q c s S zy q c s S zx− − +  

We recognize the expressions for the sine and cosine of twice the 
angle  WXD/2 , i.e., WXD. 

( ) ' [ 1] ' [ ]D p C x p S yz= −int  
'cos ( [1 ] [ ]) 'sin ( [1 ] [ ])X Xq C x S zy q C y S+ Ω ∆ − + Ω ∆ + zx

]

 
Further, we calculate the effect of J. 

2 2( ) ' [ 1] ' [ ] ' [ ] ' [ 1JD p C x p CS yz p SC yz p S x⎯⎯→ + − +int  
2 2'cos ( [1 ] [ ] [ ] [1 ])Xq C x CS zy SC zy S+ Ω ∆ + − + x  
2 2'sin ( [1 ] [ ] [ ] [1 ])Xq C y CS zx SC zx S y+ Ω ∆ − + +  

'[ 1] 'cos [1 ] 'sin [1 ]X Xp x q x q y= + Ω ∆ + Ω ∆  
 We now show that this result can be obtained in just two lines 
by using the shortcut.  Following the rules described above, we first 
apply the 180xA pulse, then an evolution D (where only the shift X is 
considered, while the shift A and the coupling J are ignored). 

180( ) '[ 1] '[1 ]xAD n p x q⎯⎯⎯→ + x  
'[ 1] 'cos [1 ] 'sin [1 ]shift X

X Xp x q x q y⎯⎯⎯→ + Ω ∆ + Ω ∆  
 

The first term, representing the A magnetization, appears unchanged 
because its evolution during the first delay D/2 has been undone 
during the second D/2.  The X magnetization has evolved with the 
frequency WX during the delay D, but in the end it is not affected by the 
J-coupling.  This is because its two components, fast and slow, have 
undergone a change of label in the middle of the delay D.  
 In a system of two nuclei (A and X) if the pulse affects nucleus 
A, only shift X is operative.  Shift A and coupling JAX are refocused 
(see example above).  If the 180o pulse affects both A and X, only the 
coupling is operative.  Both shifts are refocused.  In a system of more 
than two nuclei (e.g., AMX), if the pulse affects all nuclei, only the 
couplings are active.  If the pulse affects all nuclei except one (e.g., 
nucleus A), we see the effect of shift A and of the couplings which do 
not involve A, i.e., JMX.  If the pulse affects only nucleus A, all shifts 
except A and the couplings involving A (JAM , JAX ) are active. 
 



 
 
 
 
 
 
 
80     Product Operator Treatment 

9.  PO TREATMENT OF 2DHETCOR: TWO SPINS (CH) 
 
 We consider again the sequence in Figure I.2 applied to a 
system of two weakly coupled spin 1/2 nuclei A and X.  The density 
matrix at equilibrium (see II.5) is: 
 

   (0) '[ 1] '[1 ]D p z q z= − −  
where 
   p' = p/2N 
   q' = q/2N 
   N = number of states = 4 
 

p and q have the same meaning as in (I.3) and (I.4). 
 
                   90(0) '[ 1] '[1 ]xXD p z q y⎯⎯⎯→− +  (II.27) 

D(1) 
 
We apply the "refocusing routine" treatment to the segment  

/ 2 180 / 2e et xA t− −  
As shown in Section II.8 this routine has the same effect as the 180xA 
pulse followed by an evolution te during which only the shift X is 
active.  The coupling AX is refocused by the 180xA pulse. 
 

180(1) '[ 1] '[1 ]xAD p z q y⎯⎯⎯→ +  
           ( ) '[ 1] 'cos [1 ] 'sin [1 ]et shift X

X e X ep z q W t y q W t x⎯⎯⎯⎯→ + −  (II.28) 
D(4) 

 
A coupled evolution ∆1 follows, which can be handled according to 
the rules of Section II.7 with 

                           1 1

1 1

' cos cos
' sin sin

X

X

c C J
s S J

π
π

= Ω ∆ = ∆
= Ω ∆ = ∆

 

shift A(4) sameD ⎯⎯⎯→  
shift X '[ 1] 'cos ( '[1 ] '[1 ]) 'sin ( '[1 ] '[1 ])X e X ep z q t c y s x q t c x s y⎯⎯⎯→ + Ω − − Ω +

'[ 1] 'cos ( ' [1 ] ' [ ] ' [1 ] ' [ ])J
X ep z q t c C y c S zx s C x s S zy⎯⎯→ + Ω − − −  

' sin ( ' [1 ] ' [ ] ' [1 ] ' [ ])X eq t c C x c S zy s C y s S z− Ω + + − x  
D(5) 
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Since   ∆1 = 1/2J  and  pJ∆1 = π/2,  C = 0  and  S = 1 
 

(5) '[ 1] 'cos ( '[ ] '[ ])X eD p z q t c zx s zy= + Ω − −  
                                (II.29) ' sin ( '[ ] '[ ])X eq t s zx c z− Ω − + y
 
 Using the  trigonometric relations for the sum of two angles 
[see (A29) and (A30)] we can rewrite D(5): 
 

1 1(5) '[ 1] '[ ](cos cos sin sin )X e X X e XD p z q zx t t= + Ω Ω ∆ − Ω Ω ∆  
                         1 1'[ ](cos sin sin cos )X e X X e Xq zy t t− Ω Ω ∆ + Ω Ω ∆
      (II.30) 1 1'[ 1] '[ ]cos ( ) '[ ]sin ( )X e X ep z q zx t q zy t= − Ω + ∆ − Ω + ∆
 
 We calculate now the effects of the pulses three and four (in the 
PO formalism it is simpler to handle them separately): 
 

90
1 1(5) '[ 1] '[ ]cos ( ) '[ ]sin ( )xX

X e X eD p z q zx t q zz t⎯⎯⎯→ − Ω + ∆ − Ω + ∆  
D(6) 

90
1 1'[ 1] '[ ]cos ( ) '[ ]sin ( )xA

X e X ep y q yx t q yz t⎯⎯⎯→− + Ω + ∆ + Ω + ∆  
                                                                   D(7) (II.31) 
 
 Since no other r.f. pulse follows we can concentrate on those 
terms which represent observable magnetization components.  We 
observe nucleus A, therefore we are interested in the product operators 
[x1] and [y1] which give MxA and MyA.  We are also interested in [yz] 
and [xz] which can evolve into [x1], [y1] during a coupled evolution.  
All product operators other than the four mentioned above are 
nonobservable terms (NOT).  We can rewrite D(7) as: 
                    (II.32) 1(7) '[ 1] '[ ]sin ( ) NOTX eD p y q yz t= − + Ω + ∆ +
 
The second term is important for the 2D experiment because it is 
proton modulated (it contains the frequency WX).  It is also enhanced  
by polarization transfer (i.e., multiplied by q' rather than p'). 
 The coupled evolution D2 is necessary to render the second term 
observable.  If the decoupled detection started at t(7), the [yz] term 
would evolve into a combination of [yz] and [xz], none of which is  
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observable.  The observable terms [x1] and [y1] can derive from  [yz] 
only in a coupled evolution. 
 

shift A
1(7) '( [ 1] [ 1]) 'sin ( )( [ ]- [ ])X eD p c y s x q t c yz s xz⎯⎯⎯→− − + Ω + ∆  

shift X same '( [ 1] [ ] [ 1] [ ])J p cC y cS xz sC x sS yz⎯⎯⎯→ ⎯⎯→− − − −  

1'sin ( )( [ ]- [ 1]- [ ]- [ 1])+NOTX eq t cC yz cS x sC xz sS y+ Ω + ∆  (II.33) 
D(8) 

where  

                             2

2 2

cos cos
sin sin

A

A

c C
s S

2J
J
π
π

= Ω ∆ = ∆
= Ω ∆ = ∆

  (II.34) 

 
 During the decoupled evolution that follows after t(8), the 
product operators [x1], [y1] will evolve into combinations of [x1], [y1] 
while the product operators [xz], [yz] evolve into combinations of 
[xz],[yz], i.e., they will remain nonobservable.  We can therefore retain 
only [x1], [y1] in the explicit expression of D(8): 
 

1(8) '( [ 1] [ 1]) 'sin ( )(- [ 1]- [ 1])X eD p cC y sC x q t cS x sS y= − − + Ω + ∆  
 + NOT       (II.35)  
 

 In order to maximize the proton modulated term, one selects for 
D2 the value 1/2J which leads to S = 1 and C = 0.  This value of D2 
represents an optimum in the particular case of the AX system.  It will 
be shown in Section II.10 that for AX2 and AX3 (e.g., the methylene 
and methyl cases) a shorter D2 is to be used.  For D2 = l/2J: 
 

1 2 2(8) 'sin ( )(cos [ 1] sin [ 1])+NOTX e A AD q t x y= − Ω + ∆ Ω ∆ + Ω ∆  
         (II.36) 
 

 The simplest way to describe the decoupled evolution td (from 
the point of view of the observable A) is a rotation of the transverse 
magnetization MTA about the z axis.  At t(8) we have (see Appendix J): 
 

MxA(8) = (MoA/p')(coefficient of [x1]) −
 

           = (q'/p')MoAsinΩX(te+∆1)cosΩA∆2 
 

MyA(8) = (q'/p')MoAsinΩX(te+∆1)sinΩA∆2 
 

MTA(8) = MxA(8)+iMyA(8) = (q'/p')MoAsinΩX(te+∆1) exp(iΩA∆2) (II.37) 
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The ratio '/ ' /X Aq p γ γ=  represents the enhancement factor through 
polarization transfer. 
 By handling the decoupled evolution as a magnetization 
rotation we get 
 
  (9) (8)exp( )TA TA A dM M i= Ω t

+ ∆
 

                (II.38) 1 2( '/ ') sin ( )exp[ ( )]oA X e A dq p M t i t= Ω + ∆ Ω
 
 This is in agreement with the result obtained in Part I through  
DM calculations.  The calculations requested by the PO approach are 
somewhat less complicated than those of the DM approach.  The real 
advantage will be seen when we apply (see Section II.10) the PO 
formalism  to an AX2 and AX3 case (e.g., the 2DHETCOR of a CH2 or 
CH3). 
 
 

10.  PO TREATMENT OF 2DHETCOR: CH2 AND CH3 
 
 We extend the calculations carried out in section II.9 to an AX2 
or AX3 system (e.g., a methylene or a methyl).  The density matrix at 
equilibrium is: 

   (II.39) 2

3

(0) '[ 11] '([1 1] [11 ]) for AX
(0) '[ 111] '([1 11] [11 1] [111 ]) for AX

D p z q z z
D p z q z z z

= − − +
= − − + +

 
Instead of following the two cases separately, we use the "multiplet 
formalism" introduced in Appendix L.  The reader should get ac-
quainted with this formalism before proceeding further. 
 
                                 (0) ( '/ ){ 1} '{1 }D p n z q z= − −  (II.40) 
 
valid for any AXn system. 
 
                            90(0) ( '/ ){ 1} '{1 }xXD p n z q y⎯⎯⎯→− +  (II.41) 

 

D(1) 
 
As we did in section II.9,  we treat the segment  / 2 180 / 2e et xA t− −  
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as a "refocusing routine" and this brings us directly from D(1) to D(4). 

  
180

(shiftX)

(1) ( '/ ){ 1} '{1 }

( '/ ){ 1} 'cos {1 } 'sin {1 }e

xA

t
X e X e

D p n z q y

p n z q t y q t x

⎯⎯⎯→+ +

⎯⎯⎯⎯→ + Ω − Ω
 (II.42) 

 

D(4) 
 

With the assumption that  1 1/ 2J∆ =   (i.e., πJ∆1 = π/2) we have 
1 ( )(4) ( '/ ){ 1} 'cos { } 'sin { }J

X e X eD p n z q t zx q t zy∆⎯⎯⎯→ − Ω − Ω  

    
1 ( ) ( '/ ){ 1} 'cos ( '{ } '{ })

' sin ( '{ } '{ })
X e

X e

p n z q t c zx s zy
q t c zy s zx

∆⎯⎯⎯⎯→ − Ω +

− Ω −

shift X

 (II.43) 

 

D(5) 
 
where  c', s'  have the same meaning as in (II.29), i.e.,  
 
                        1 1' cos ; ' sinX Xc s= Ω ∆ = Ω ∆
 
 Using again the trigonometric relations for the sum of two 
angles as we did in (II.30) we rewrite D(5) as: 
 

1 1(5) ( '/ ){ 1} '{ }cos ( ) '{ }sin ( )X e X eD p n z q zx t q zy t= − Ω + ∆ − Ω + ∆  
  (II.44) 

90
1 1(5) ( '/ ){ 1} '{ }cos ( ) '{ } sin ( )xX

X e X eD p n z q zx t q zz t⎯⎯⎯→ − Ω + ∆ − Ω + ∆  
D(6) 

90
1 1(6) ( '/ ){ 1} '{ }cos ( ) '{ } sin ( )xA

X e X eD p n y q yx t q yz t⎯⎯⎯→− + Ω + ∆ + Ω + ∆  
                                                    D(7) (II.45) 

1(7) ( '/ ){ 1} '{ }sin ( ) NOTX eD p n y q yz t= − + Ω + ∆ +  (II.46) 
 

 Up to this point we have followed step by step the calculations 
in Section II.9, while formally replacing  [ ]  by  { }  and using p'/n 
instead of p'.  This procedure is always valid for rotations (pulses) and 
in this case it was allowed for evolutions as stated in Appendix L, rule 
#4.  
 For the coupled evolution ∆2 we can concentrate on the 
observable terms {x1}, {y1} only and take advantage of the exception  
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stated in Appendix L, rule #5. 

   (II.47) 
2

1 1
1

(7) ( '/ )( { 1} { 1})
'sin ( )( 1 { 1}) NOT

n n

n n
X e

D p n sC x cC y
q t cSC x sSC y

∆

− −

⎯⎯→− − +

+ Ω + ∆ − − +{ }
                                                   D(8) 
 

 n= number of magnetically equivalent X nuclei (e.g., number  
      of protons in CHn). 

 2 2

2 2

cos cos
sin sin

A

A

c C
s S

J
J

π
π

= Ω ∆ = ∆
= Ω ∆ = ∆

 

 

In order to separate the effect of shift (c and s) and coupling (C and S) 
we rewrite D(8) as  
 

1
1(8) ( '/ ) ( { 1} { 1}) 'sin ( ) ( { 1} { 1})n n

X eD p n C c y s x q t SC c x s y−= − − − Ω + ∆ +  
  (II.48) 
 
Here again the second term is the true 2D signal while the first one 
generates axial peaks in the 2D picture since it does not contain the 
frequency ΩX. 
 The value ∆2 = 1/2J, which implies  S = 1  and  C = 0,  is not 
suitable anymore because it nulls the useful 2D signal for any n >1. 
We will discuss later the optimum value of ∆2. 
 In writing the magnetization components we have to follow the 
procedure stated as rule #6 in Appendix L. 
 
  MxA(8) = (nMoA/p')(coefficient of {x1}) −

1
2 1sin ( '/ ') sin ( )cosn n

oA A oA X e AM C nM q p SC t−=− Ω ∆ + Ω + ∆ Ω ∆2

2∆

2∆

2∆

 
 
  MyA(8) =  (nMoA/p')(coefficient of {y1}) −

   1
2 1cos ( '/ ') sin ( )sinn n

oA A oA X e AM C nM q p SC t−= Ω ∆ + Ω + ∆ Ω
 
  MTA(8) = MxA(8) + iMyA(8) 
 

1
2 1exp( ) ( '/ ') sin ( )exp( )n n

oA A oA X e AiM C i nM q p SC t i−= Ω ∆ + Ω + ∆ Ω  
 

1
1[ ( '/ ') sin ( )]exp( )n n

oA X e AM iC n q p SC t i−= + Ω + ∆ Ω  (II.49) 
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The decoupled evolution td during which the detection takes place is 
treated the same way it was done in II.9, as a rotation about Oz. 
 

  (9) (8)exp( )TA TA A dM M i= Ω t
)]∆

 
   1

1 2[ ( '/ ') sin ( )]exp[ (n n
oA X e A dM iC n q p SC t i t−= + Ω + ∆ Ω +

  (II.50) 
 The enhancement factor of the 2D term is   

1( '/ ') nn q p SC − .   
Now we can discuss the optimum value of ∆2.  In Figure II.4 the value 
of the product  nSCn-1  is plotted versus ∆2J  for n = 1, 2 and 3.  The 
optimum ∆2 values are: 
  21 ( ) 0.5 /n CH= ⎯⎯→ ∆ = J

J
J

  (II.51) 2 22 ( ) 0.25 /n CH= ⎯⎯→ ∆ =

  3 23 ( ) 0.196 /n CH= ⎯⎯→ ∆ =
 A good compromise is  ∆2 = 0.3/J  for which all three 
expressions  S,  2SC,  and 3SC2 have values exceeding 0.8.  The bad 
news is that this ∆2 value does not cancel the axial peak, represented 
by the term  iCn  in (II.50). 
 

 
 

Figure II.4.  Dependence of the factor  nSCn-1  (S for CH,  2SC for 
CH2, and  3SC2  for CH3 ) on ∆2 J. 
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11.  PO TREATMENT OF A POLARIZATION 
TRANSFER  

SEQUENCE: INEPT (INSENSITIVE NUCLEI  
ENHANCEMENT BY POLARIZATION TRANSFER)  

WITH DECOUPLING 
 
 We discuss first the decoupled INEPT sequence shown in 
Figure II.5.  Its goal, an increased sensitivity of 13C spectra, is 
achieved in two ways:  by increasing the peak intensities for the 
protonated carbons, and by allowing a larger number of scans in a 
given experiment time. 
 

  

td

t(0) t(1) t(2) t(3) t(4) t(5) t(6) t(7)

180xH90xH

90xC  180xC

Decouple

90yH

H

C13

1

tt D

 
 

Figure  II.5  The  INEPT  sequence:  90 180xH xCHτ τ− − −  
90 90yH xC A− − − ∆ − T  

 
 We treat the CHn case with n = 1,2 or 3.  The density matrix at 
thermal equilibrium is: 
 

                                ( '/ ){ 1} '{1 }D p n z q z= − −  (II.52) 
 

 One of the advantages of INEPT is that it allows fast scanning, 
(limited by the proton relaxation only).  In order to emphasize this 
feature we will assume that only the protons have fully relaxed in the 
interval between sequences and will write the initial density matrix as 
 

                          (0) ( '/ ){ 1} '{1 }D p n z q zλ= − −  (II.53) 
 

where  λ  is a recovery factor for carbon  (0≤ λ≤ 1). 
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The effect of the first pulse is 
 

                     90(0) ( '/ ){ 1} '{1 }xHD p n z q yλ⎯⎯⎯→− +  (II.54) 
D(1) 

 

 See Appendix L for the  meaning of { } (multiplet formalism). 
We treat now the portion from t(1) to t(4) as a shift-refocusing routine 
(see Section II.8).  We will apply a nonselective 180xCH pulse 
followed by a 2τ evolution in which the coupling only is expressed 
and this will bring us to t(4). 

         
180 2 ( .)(1) ( '/ ){ 1} '{1 }
( '/ ){ 1} '{1 }cos2 '{ }sin 2

xCH J couplD p n z q y
p n z q y J q zx J

τλ

λ π τ π τ

⎯⎯⎯⎯→+ − ⎯⎯⎯⎯⎯→

⎯⎯→ − +
 (II.55) 

D(4) 
 

The next two pulses have to be treated successively because one of the 
terms in D(4) is affected by both the proton and the carbon pulse. 

90

90

(4) ( '/ ){ 1} '{1 }cos2 '{ }sin 2
( '/ ){ 1} '{1 }cos2 '{ }sin 2

yH

xC

D p n z q y J q zz J
p n y q y J q yz J

λ π τ π τ

λ π τ π τ

⎯⎯⎯→ − −

⎯⎯⎯→− − +
 

                                                    D(5) (II.56) 
 

 After t(5) no pulse follows and we can concentrate on the 
observable terms, keeping in mind that our observe nucleus is 13C. 
 

             (5) ( '/ ){ 1} '{ }sin 2 NOTD p n y q yz Jλ π τ= − + +  (II.57) 
 

The second term is enhanced by polarization transfer and it does not 
depend on λ.  This means the pulse repetition rate is limited only by 
the proton relaxation as far as the second term is concerned.  The 
optimum value for t is 1/4J which leads to sin 2 Jπ τ  = 1. With this 
assumption: 
 

                    (5) ( '/ ){ 1} '{ } NOTD p n y q yzλ= − + +  (II.58) 
 

In D(5) the second term is still not an observable; hence, the necessity 
of ∆.  Using rule #5 in Appendix L we obtain: 

(5) ( '/ ) ( { 1} { 1})nD p n C c y s xλ∆⎯⎯→− −  
            (II.59) 1' ( { 1} { 1}) NOTnq SC c x s y−+ − − +

D(6) 
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Where 
 

cos cos
sin sin

C

C

c C J
s S J

π
π

= Ω ∆ =
= Ω ∆ = ∆

∆

∆

 

 

 The expression (II.59) has much in common with (II.48), with 
the difference that the proton frequency ΩH is not to be seen.  This is 
not alarming since INEPT is not intended as a 2D sequence.  Going 
through the same steps as from (II.48) to (II.50) we get: 
 
     (II.60) 1(6) [ ( '/ ') ]exp( )n n

TC oC CM M i C n q p SC iλ −= − − Ω

     (II.61) 1(7) [ ( '/ ') ]exp[ ( )]n n
TC oC C dM M i C n q p SC i tλ −= − − Ω + ∆

 
We focus on the second term in the brackets (polarization transfer and 
fast scanning).  The optimum value of ∆ is selected according to 
Figure II.4 and relations (II.51), leading to   . The 
enhancement factor is therefore  

1 0.8nnSC − ≥
0.8 /H Cγ γ≥ . 
 

12.  COUPLED INEPT  
 
 The coupled INEPT (Figure II.6) is used for spectra editing. 
 

        

td

t(0) t(1) t(2) t(3) t(4) t(5) t(6)

180xH90xH

90xC  180xC

90yH

H

C13

1

tt

 
 
 

Figure II.6  The coupled  INEPT  sequence:  90 180xH xCHτ− −  
90 90yH xC ATτ− − − −  
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 The magnetization at t(6) can be written by taking its ex-
pression from the previous sequence (II.60) and replacing ∆ by td : 
 

          1(6) [ ( '/ ') ]exp( )n n
TC oC C dM M i C n q p SC i tλ −= − − Ω  (II.62) 

 

with                  cos sindC Jt S J dtπ π= =  (II.63) 
 

 The resemblance with (II.61) is only formal.  In (II.61) we had: 
 

                         cos sinC J S Jπ π= ∆ = ∆  
 

and the detection time td appeared only in the exponential factor 
outside the brackets.  The signal was a singlet.  In (II.62) the variable 
td  is also contained in C and S and the Fourier  transform exhibits a 
multiplet.  In order to see how this multiplet looks like, we have to 
discuss the expression (II.62) for n = 1, 2, and 3.  We split MTC(6) into 
two terms 
 

1(6) ( '/ ') exp( ) exp( )n n
TC oC C d oC C dM M q p nSC i t iM C i tλ−= − Ω − Ω  

                     A BM M= +  (II.64) 
 
and discuss these two terms separately, while keeping in mind that C 
and S have the meanings in (II.63). 
 
A) Polarization enhanced multiplet (term MA) 
 
 We discuss separately the CH, CH2, and CH3 cases. 
 
n = 1   (CH case) 
 

                               ( '/ ') exp( )A oC C dM M q p S i t= − Ω  
 

Using (A28) we have    

                                 exp( ) exp( )
2

d di Jt i JtS
i

π π− −
=  

and this leads to 

                 ( ) ( )1( '/ ')( )[ ]
2

C d C di J t i J t
A oCM M q p e e

i
π πΩ + Ω −= − +  (II.65) 

 

This is the up-down doublet of Figure II.7a . 
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For a methylene 
 

n = 2   (CH2 case) 
 

                              ( '/ ')2 exp( )A oC C dM M q p SC i t= − Ω  
 

Using (A36) we have 

                               exp(2 ) exp( 2 )
4

d di Jt i JtSC
i

π π− −
=  

and 
 

               ( 2 ) ( 2 )1( '/ ')( )[ ]
2

C d C di J t i J t
A oCM M q p e e

i
πΩ + Ω −= − + π

d

 (II.66) 
 

This is a triplet with the central line missing and the other two lines 
one up and one down (see Figure II.7b). 
 
n = 3   (CH3 case) 
 

                              2( '/ ')3 exp( )A oC CM M q p SC i t= − Ω  
 

We use (A38) and obtain 
 

             
( 3 ) ( )

( ) ( 3 )

3( '/ ')( )[
8

]

C d C

C d C d

i J t i J
A oC

i J t i J t

M M q p e e
i

e e

π π

π π

Ω + Ω +

Ω − Ω −

= − −

+ +

dt

 (II.67) 

 

This is the peculiar quartet in Figure II.7c: four lines of equal 
intensities, two up and two down. 
 
B) Residual nonenhanced multiplet (term MB) 
 
 The term MB in (II.64) is smaller than MA (no polarization 
enhancement and λ < 1).  We will show that it represents a conven-
tional multiplet. 
 
n = 1   (CH case) 
 

                               exp( )B oC C dM iM C i tλ= − Ω  
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Using (A27) and  i = 1/i  we obtain -

                           ( ) ( )1( )[ ]
2

C d C di J t i J t
B oCM M e e

i
πλ Ω + Ω −= + π  (II.68) 

 

the regular doublet in Figure II.7d . 
 
n = 2   (CH2 case) 
 
                               2 exp( )B oC C dM iM C i tλ= − Ω  
 
Using (A35) we obtain the triplet 

                 ( 2 ) ( 2 )1( )[ 2 ]
4

C d C d C di J t i t i J t
B oCM M e e e

i
π πλ Ω + Ω Ω −= + +  (II.69) 

 
as in Figure II.7e . 
 
n = 3   (CH3 case) 
  
                                 3 exp( )B oC C dM iM C i tλ= − Ω  
 
We use (A37) and obtain 

( 3 ) ( ) ( ) ( 3 )1( )[ 3 3 ]
8

C d C d C d C di J t i J t i J t i J t
B oCM M e e e e

i
π π πλ Ω + Ω + Ω − Ω −= + + + π  

  (II.70) 
 
a regular looking quartet (see Figure II.7f).  
 We notice that all the expressions (II.65) through (II.70) contain 
the factor 1/i  (or i) , indicating that the respective magnetizations 
are along the y axis. 

−
−

 When the term MB is not vanishingly small, it breaks the 
symmetry of the multiplet, as shown in Figure II.7 (g through i).  This 
drawback can be eliminated by means of an appropriate phase cycling.  
It is shown in Section II.13 that we have a similar situation with the 
DEPT sequence and a two step phase cycling is sufficient to cancel 
the residual nonenhanced signal. 
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a

b

c

d

e

f

g

h

i

CH

CH

CH

2

3

J

J

J

J
2

nCnCnC

J
2

 
Figure II.7.  Coupled INEPT; a,b,c − Polarization enhanced 
multiplet (term AM ); d,e,f − Residual non-enhanced multiplet (term 

BM );  g,h,i Actual spectrum − (term )A BM M+  
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13.  PO TREATMENT OF DEPT (DISTORTIONLESS 

ENHANCEMENT POLARIZATION TRANSFER) 
 

 DEPT is a one-dimensional sequence used as a tool for 
unambiguous identification of the CH, CH2, and CH3 peaks in a  
proton decoupled 13C spectrum.  It shares with INEPT the advantage 
of permitting a fast repetition rate.  The recycle time has to be longer 
than the proton relaxation time but can be fairly shorter than the 
carbon T1. The nonprotonated carbons will not show up in a DEPT 
spectrum. 
 The sequence is shown in Figure II.8. 
 
 

  t(0) t(1) t(2) t(3) t(4) t(5)

1/2J 1/2J 1/2J

180xH90xH q

90xC  180xC

td

t(6) t(7)

Decouple

yH

H

C13

1

±

 
 
 
Figure II.8. The basic (one-dimensional) DEPT sequence: 90xH  
1/2J 180xH 90xC

−
− − − 1/2J − 180xC − θ ± yH − 1/2J − AT(dec

). 
 
 

 The initial density matrix is 
 

                                   (0) ( '/ ){ 1} '{1 }D p n z q zλ= − −  (II.71) 
 

where l  is a recovery factor for carbon [see (II.53)] 
 

                        90(0) ( '/ ){ 1} '{1 }xHD p n z q yλ⎯⎯⎯→− +  (II.72) 
 

D(1) 
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For the evolution we use the notations 
 

cos / 2 ' cos / 2 cos / 2 cos / 2 0
sin / 2 ' sin / 2 sin / 2 sin / 2 1

C H

C H

c J c J C J J
s J s J S J J

π π
π π

= Ω = Ω = = =
= Ω = Ω = = =

 

  (II.73) 
 

 In treating the evolution, the shift and coupling may be handled 
in any order.  Here, because of the particular values of C and S, we are 
better off by starting with the coupling. 
 

coupl.(1) ( '/ ){ 1} '{ }JD p n z q zxλ⎯⎯⎯→− −  
 

                   shift H ( '/ ){ 1} ' '{ } ' '{ }p n z q c zx q s zyλ⎯⎯⎯→− − −  (II.74) 
 

D(2) 
 

180(2) ( '/ ){ 1} ' '{ } ' '{ }xHD p n z q c zx q s zyλ⎯⎯⎯→− − +  
 

                90 ( '/ ){ 1} ' '{ } ' '{ }xC p n y q c yx q s yyλ⎯⎯⎯→ + −  (II.75) 
 

D(3) 
 
 The multiplet formalism { } can help us only so far.  It does not 
apply to the coupled evolution of terms like {zx} or {yx} since this 
coupled evolution is followed by some more pulses (cf. Rule #5 in 
Appendix L).  We have to consider separately the CH, CH2, and CH3, 
using the corresponding subscripts 1,2,3.  For completeness, we will 
also consider the case of the nonprotonated carbon (subscript zero). 
 
    o (3) '[ ]D p yλ=  
 

    1(3) '[ 1] ' '[ ] ' '[ ]D p y q c yx q s yyλ= + −  
 

    2 (3) '[ 11] ' '([ 1] [ 1 ]) ' '([ 1] [ 1 ])D p y q c yx y x q s yy y yλ= + + − +  
 

    3 (3) '[ 111] ' '([ 11] [ 1 1] [ 11 ])
' '([ 11] [ 1 1] [ 11 ])

D p y q c yx y x y x
q s yy y y y y

λ= + + +
− + +

 (II.76) 
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The evolution from t(3) to t(4) leads to 
 

     (no coupling) shift C
o (3) '( [ ] [ ]) (4)D p c y s xλ⎯⎯⎯→ − = oD

 

    coupl.
1(3) '[ ] '( '[ ] '[ ])JD p xz q c yx s yyλ⎯⎯⎯→− + −  

 

    shift H 2 2'[ ] '( ' [ ] ' '[ ] ' '[ ] ' [ ])p xz q c yx c s yy s c yy s yxλ⎯⎯⎯→− + + − +  
 

                 '[ ] '[ ]p xz q yxλ= − +  
 

      shift C
1'( [ ] [ ]) '( [ ] [ ]) (4)p c xz s yz q c yx s xx Dλ⎯⎯⎯→− + + − =

 

 In processing the evolution of D2(3) we have to treat separately 
the coupling of the carbon with the first and with the second proton. 
 

cplAX1
2 (3) '[ 1] ' '([ 1] [ ]) ' '([ 1] [ ])D p xz q c yx xzx q s yy xzyλ⎯⎯⎯→− + − − −  

 

cplAX2 '[ ] ' '( [ ] [ ]) ' '([ ] [ ])p yzz q c xxz xzx q s xyz xzyλ⎯⎯⎯⎯→− + − − − −  
 
 

shift H 2'[ ] ' ' ( [ ] [ ]) ' ' '( [ ] [ ])p yzz q c xxz xzx q c s xyz xzyλ⎯⎯⎯→− + − − + − −  
 

2' ' '( [ ] [ ]) ' ' ([ ] [ ]q s c xyz xzy q s xxz xzx− − − − + )  
 
 

shift C'[ ] '([ ] [ ]) '( [ ] [ ])p yzz q xxz xzx p c yzz s xzzλ λ= − − + ⎯⎯⎯→− −  
 

' ([ ] [ ]) ' ([ ] [ ])q c xxz xzx q s yxz yzx− + − + = D2 4( )  
 
We were allowed to handle the evolution of both protons in one step 
only because none of the POs had x or y for both protons, i.e., only 
one proton was affected by the evolution in each PO. 
 Similar calculations will produce D3(4).  Summarizing the 
results at t(4) we have: 
 

o (4) '( [ ] [ ])D p c y s xλ= −  
 

1(4) '( [ ] [ ]) ' [ ] ' [ ]D p c xz s yz q c y x q s xxλ= − − + −  (II.77) 
 

2 (4) '( [ ] [ ]) ' ([ ] [ ]) ' ([ ] [ ])D p c yzz s xzz q c xxz xzx q s yxz yzxλ= − + − + − +  
 

3 (4) '( [ ] [ ]) ' ([ ] [ ] [ ])D p c xzzz s yzzz q c yxzz yzxz yzzxλ= + − + +  
' ([ ] [ ] [ ])q s xxzz xzxz xzzx+ + +  
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 The θ ± y pulse is mathematically equivalent to a yθ±  pulse. 
Therefore, we will treat it as a rotation about the y-axis with alternate 
signs of q.  We take also into account that 
 

cos( ) cos ; sin( ) sinθ θ θ− = − = − θ  
cos( ) cos ; sin( ) sinθ θ θ± = ± = ± θ

D

 
 

     180
o o(4) '( [ ] [ ]) (5)xCD p c y s xλ⎯⎯⎯→ − − =

 

(the proton pulse has no effect). 
 
    180

1(4) '( [ ] [ ]) ' [ ] ' [ ]xCD p c xz s yz q c y x q s xxλ⎯⎯⎯→ − + − −  
 

   'cos ( [ ] [ ]) 'sin ( [ ] ' [ ] NOTyH p c xz s yz q c y z q s xzθ λ θ θ±⎯⎯⎯→ − + ± + +
 

              = D1(5) 
 
In the last calculation we have retained only the observable terms  
([x1],[y1])and the potentially observable terms ([xz],[yz]). We have 
relegated terms as [xx], [xy], [yx], [yy] to the NOT bunch (non-
observable terms), as described in Appendix K. 
  In processing D2(4) we have to calculate the effect of the proton 
pulse, which is neither 90o nor 180o, separately on the two protons 
(see end of Section II.6). 
 

180
2 (4)

'( [ ] [ ]) ' ([ ] [ ]) ' ([ ] [ ])

xCD

p c yzz s xzz q c xxz xzx q s yxz yzxλ

⎯⎯⎯→

⎯⎯→ + − + + +
 

 
1 'cos ( [ ] [ ]) 'cos ( [ ] [ ])

'sin ( [ ] [ ]) NOT

yX p c yzz s xzz q c xzx s yzx
q c xzz s yzz

θ λ θ θ
θ

±⎯⎯⎯→ + + − +
± − +

 

 
2 2'cos ( [ ] [ ]) 'cos sin ( [ ] [ ])

'sin cos ( [ ] [ ]) NOT

yX p c yzz s xzz q c xzz s yzz
q c xzz s yzz

θ λ θ θ θ
θ θ

±⎯⎯⎯→ + ± −
± − +

 

 
2'cos ( [ ] [ ]) 2 'cos sin ( [ ] [ ]) NOTp c yzz s xzz q c xzz s yzzλ θ θ θ= + ± − +  

 

              = D2(5) 
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Similar calculations have to be performed on D3(4) and the situation at 
t(5) is 
 

   o (5) '( [ ] [ ])D p c y s xλ= − −  
 

   1(5) 'cos ( [ ] [ ]) 'sin ( [ ] ' [ ] NOTD p c xz s yz q c y z q s xzλ θ θ= − + ± + +  
 

    (II.78) 
2

2 (5) 'cos ( [ ] [ ])
2 'cos sin ( [ ] [ ]) NOT

D p c yzz s xzz
q c xzz s yzz

λ θ
θ θ

= +
± − +

+

]

 

    
3

3

2

(5) 'cos ( [ ] [ ])

3 'cos sin ( [ ] [ ])

D lp q c xzzz s yzzz

q q q c yzzz s xzzz NOT

= −

± − −
 
 

Follows now the last 1/2J coupled evolution. We will retain only the 
observable terms, having x or y for carbon and 1 for all protons. 
 

   shift 2 2
o (5) '( [ ] [ ] [ ] [ ]) '[CD p c y cs x sc x s y p yλ λ⎯⎯⎯→ − + − − = −  

             '[ ] (6)op y Dλ= − =  
 

coupl.
1(5) 'cos ( [ 1] [ 1]) 'sin ( [ 1] [ 1] NOTD p c y s x q c x s yλ θ θ⎯⎯⎯→ − − ± − + +  

shift C 2 2'cos ( [ 1] [ 1] [ 1] [ 1])p c y cs x sc x s yλ θ⎯⎯⎯→ − + − −  
 

2 2'sin ( [ 1] [ 1] [ 1] [ 1]) NOTq c x cs y sc y s xθ± − − + − +  

1'cos [ 1] ( 'sin [ 1]) NOT= (6)p y q x Dλ θ θ= − − ± +  
 

 

After performing similar calculatons for D2(5) and D3(5), we can 
summarize the results at t(6) as follows 
  

    (6) '[ ]oD p yλ= −  
 

    1(6) ( 'cos [ 1] 'sin [ 1]) NOTD p y q xλ θ θ= − ± +  (II.79) 
 

     2
2 (6) ( 'cos [ 11] 2 'sin cos [ 11]) NOTD p y q xλ θ θ θ= − ± +

 

     3 2
3 (6) ( 'cos [ 111] 3 'sin cos [ 111]) NOTD p y q xλ θ θ θ= − ± +

 
 

 As a remarkable achievement of the DEPT sequence, we notice 
that no chemical shift (proton or carbon) is expressed in the density 
matrix at time t(6), when the acquisition begins.  We will not have any 
frequency dependent phase shift.  This alone can justify the 
"distortionless" claim in the name of the sequence. 
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 The term containing l can be relatively small when a high 
repetition rate is used. We are interested in the second term, which 
does not contain the factor l and is also polarization enhanced (has q' 
rather than p'). 
 The first term can be edited out by phase cycling.  The sinq 
factor in the expression of the density matrix corresponds to the last 
proton pulse (see Figure II.8) being applied along the +y and y 
axis, respectively.  If we take a scan with the phase +y and subtract it 
from the one with phase 

±

−

− y, the first term is cancelled and we are 
left with 
 

               1(6) 'sin [ 1] NOTD q xθ= +  
               2 (6) 2 'sin cos [ 11] NOTD q xθ θ= +  (II.80) 
                2

3 (6) 3 'sin cos [ 111] NOTD q xθ θ= +
 

 The subtraction is performed by a 180o shift in the receiver 
phase. Theoretically, a two-step phase cycling is enough, in which the 
phase of the last proton pulse is 
  − y +y   
and the receiver phase is 
        0o 180o 
 

Additional phase cycling is commonly used to cancel radio-frequency 
interferences and the effect of pulse imperfections. 
 The nonprotonated carbons do not appear in the phase-cycled 
spectrum.  The discrimination between CH, CH2, and CH3 is done by 
running the sequence three times, with different values of the flip 
angle q, namely 90o, 45o and 135o.  
 When q = 90o, then cosq = 0 , sinq = 1 and (II.80) becomes 
 

  D1(6) = q'[x1]) + NOT 
 

  D2(6) = NOT 
 

  D3(6) = NOT 
 

This is a 13C spectrum in which only the CH lines appear. When q is 
slightly larger or smaller than 90o, a CH2 will appear as a small 
singlet, negative or positive, respectively.  That is why DEPT is a 
good method for calibrating the 90o proton pulse in a spectrometer 
configured for observing carbon. 
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 When q = 45o, cosq = 1/ 2  , sinq = 1/ 2  and (II.80) becomes 
 

  D1(6) = (1/ 2 )q'[x1]) + NOT 
 

  D2(6) = q'[x11] + NOT 
 

  D3(6) = (3/ 2 2) q'[x111]) + NOT 
 
All CH, CH2, and CH3 appear as positive singlets.  
 

 When q = 135o, then cosq = -1/ 2  , sinq = 1/ 2  and (II.80) 
becomes 
 

  D1(6) = (1 2/ )q'[x1]) + NOT 
 

  D2(6) = − q'[x11] + NOT 
  D3(6) = (3/ 2 2) q'[x111]) + NOT 
 
This is the same situation as for 45o, but CH2 peaks appear negative.  
 We have discussed all the features of DEPT using the 
expression of the density matrix at time t(6), when the acquisition 
begins.  The 13C magnetization, which is oriented along x at t(6), will 
precess during the acquisition with the Larmor frequency correspond-
ing to the respective line and will appear as a singlet. 
 In principle only the 90o and the 135o runs are sufficient for an 
unambigous identification of the CH, CH2 

, and CH3 peaks. The 45o 
run is necessary when one wants to do spectral editing.  For the 
nonprotonated carbons, a normal run is needed with a long recycle 
time. 
 Modern instruments offer the possibility to edit DEPT spectra 
in order to select only the peaks of one group (e.g., CH) while 
eliminating the peaks of the other two groups (CH2 and CH3).  This is 
theoretically based on linear combinations of the spectra obtained with 
different values of q (45o, 90o, 135o). 
 Table II.2 contains the relative amplitudes of CH, CH2 

, and 
CH3 peaks for each of the three angles. 
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Table II.2.  Relative peak amplitudes in the raw DEPT spectra. 
 

 
Spectrum 
 

 

θ 
 

 
CH 

 
CH2

 
 
CH3

 

 
       A 
 

 
45o 

 1 2  

(0.707) 

 
  1 ( )3 2 2   

(1.06) 
 
       B 
 

 
90o 

 
    1 

 
  0 

 
    0 

  
       C 
 

 
135o 

 1 2  
(0.707) 

 
 -1 ( )3 2 2   

(1.06) 
 

 Table II.3 shows the operations necessary to obtain spectrs of 
only one of the three groups or all of them together (note that the 
spectrum taken at 45o also shows the peaks of all groups, but not their 
true amplitudes). 
 

Table II.3.  Linear combinations of the raw DEPT spectra, necessary 
in order to obtain only one of the three groups or all of them together. 

 
 

         Combination      
 

 

    CH 
 

    CH2 
 

    CH3 

 

             B 
 

 

      1 
 

 

      0 
 

 

      0 
 

 

       (A C)/2 −
 

 

      0 
 

 

      1 
 

 

      0 
 

 

(A+C - 1.41B)/2.12 
 

 

      0 
 

      0 
 

      1 

 

  Sum of the above 
 

 

      1 
 

      1 
 

      1 

 
 Some instrument softwares make it possible to alter the theo-
retical coefficients in order to compensate for hardware imperfections. 
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14.  PO TREATMENT OF APT 
(ATTACHED PROTON TEST) 

 
 APT is probably the first sequence designed to identify the 
number of hydrogen atoms attached to each carbon in a decoupled 13C 
spectrum.  The sequence is relatively simple and does not involve 
proton pulses. The broadband proton decoupler is kept permanently 
on, with the exception of one specific 1/J delay. 
 The sequence can be correctly analyzed within the frame of the 
vector representation.  Here we treat it with the PO formalism.  The 
sequence is shown in Figure II.9. 
 
 

t(0) t(1) t(2) t(3)

td

t(4) t(5)

   1/J 1/J

90xC  180yC

DecoupleH

C13

1
Decouple

 
 
Figure II.9. The APT sequence: 90xC − 1/J − 180yC − 1/J 
(decouple) AT(decouple) −

 

 
We will treat separately the  C, CH, CH2, and CH3 systems, denoting 
the respective density matrices with subscripts 0 to 3. 
 

   (0) '[ ]oD p= − z

z

z

 

   (II.81) 1(0) '[ 1] '[1 ]D p z q= − −
 

   2 (0) '[ 11] '([1 1] [11 ])D p z q z= − − +
 

   3 (0) '[ 111] '([1 11] [11 1] [111 ])D p z q z z z= − − + +
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 Since no coherent proton pulse is applied throughout the 
sequence, we can anticipate that the proton POs will never turn into 
13C observables.  We can treat them as NOT (nonobservable terms). 
We start therefore with 
 

 (0) '[ ]oD p z= −  
 1(0) '[ 1] NOTD p z= − +  (II.82) 
 2 (0) '[ 11] NOTD p z= − +  
 3 (0) '[ 111] NOTD p z= − +  
 

Anyhow, the proton components do not have a predictable behavior 
during the delay in which the decoupler is turned on (see Figure II.9). 
 

         90(0) '[ ] (1)xC
o oD p y⎯⎯⎯→ = D

1D
D

         (II.83) 90
1(0) '[ 1] NOT= (1)xCD p y⎯⎯⎯→ +

         90
2 2(0) '[ 11] NOT= (1)xCD p y⎯⎯⎯→ +

         90
3 3(0) '[ 111] NOT= (1)xCD p y D⎯⎯⎯→ +

 

 For the evolution 1/J we use the notations 
 

cos / ; cos / cos 1
sin / ; sin / sin 0

C

C

c J C J J
s J S J J

π π
π π

= Ω = = = −
= Ω = = =

 

 

   
shift(1) '( [ ] [ ]) (2)C

o oD p c y s x⎯⎯⎯→ − = D
 

   coupl.
1(1) '[ 1] NOTD p y⎯⎯⎯→− +

     shift
1'( [ 1] [ 1]) NOT= (2)C p c y s x D⎯⎯⎯→ − − +

 

   coupl. 1 coupl. 2
2 (1) '[ 11] NOT '[ 11] NOTAX AXD p y p y⎯⎯⎯⎯→− + ⎯⎯⎯⎯→+ +

   shift
2'( [ 11] [ 11]) NOT= (2)C p c y s x D⎯⎯⎯→ − +

 

   coupl. 1 coupl. 2
3 (1) '[ 111] NOT '[ 111] NOTAX AXD p y p y⎯⎯⎯⎯→− + ⎯⎯⎯⎯→+ +

            coupl. 3 '[ 111] NOTAX p y⎯⎯⎯⎯→− +

            shift
3'( [ 111] [ 111]) NOT= (2)C p c y s x D⎯⎯⎯→− − +

 
 In (II.84) we summarize the results at t(2).  It is not necessary  
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to carry the NOT any farther. 
 

  (2) '( [ ] [ ])oD p c y s= + − x

D
D

D
D

)D

y
y

  (II.84) 1(2) '( [ 1] [ 1])D p c y s x= − −
  2 (2) '( [ 11] [ 11])D p c y s x= + −
  3 (2) '( [ 111] [ 111])D p c y s x= − −
 

 We observe that the density matrices for CH and CH3 have a 
minus sign.  It comes from the fact that, during the evolution 1/J, the 
coupling to each proton reverses the sign (C = -1). This is exactly 
what the APT is meant to do.  The following pulse and delay are only 
intended to refocus the shift evolution, in order to avoid frequency 
dependent phaseshifts. 
 

  180
o o(2) '( [ ] [ ]) (3)yCD p c y s x⎯⎯⎯→+ + =

  180
1 1(2) '( [ 1] [ 1]) (3)yCD p c y s x⎯⎯⎯→− + =

  180
2 2(2) '( [ 11] [ 11]) (3)yCD p c y s x⎯⎯⎯→+ + =

  180
3 3(2) '( [ 111] [ 111]) (3)yCD p c y s x⎯⎯⎯→− + =

 

 Now we have the 1/J coupled evolution 
 

shift 2 2
o o(3) '( [ ] [ ] [ ] [ ]) '[ ] (4CD p c y cs x sc x s y p y⎯⎯⎯→+ − + + = + =  

 

It works the same way for the other three cases and at t(4) we have 
 

  (4) '[ ]oD p= +
  (II.84) 1(4) '[ 1]D p= −
  2 (4) '[ 11]D p y= +
  3 (4) '[ 111]D p y= −
 

 At t(4) the detection starts.  All peaks will be singlets 
(decoupled acquisition) but CH and CH3 will be negative. Admittedly, 
the PO treatment is less instructive about how this has been achieved 
than the vector representation.  
 Even with the sequences that cannot be handled with the vector 
representation alone, it may be instructive to follow the evolution of 
the magnetization components as indicated by the density matrix 
expressions.  We have done this in Section 3.11 of Part I. 
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APPENDIX A:  MATH REMINDER 
 
Complex numbers 
 
 A complex number 
 
                                          z x iy= +  (A1) 
 
can be graphically represented as in Figure A.1, where 
 

     
b

x

y

Re

Im
z

|z|

Im is the imaginary axis
Re is the real axis

 is the real part ofx z
y is the coefficient of the

imaginary part of z
|z| is the modulus

z
b is the argument of z

(absolute value) of
 

 
Figure A.1.  Graphic representation of a complex number z = x+iy.  
i = -1 is the imaginary unit. 

 
 

 The number z is fully determined when either x and y or |z| and 
b are known.  The relations between these two pairs of variables are 
(see lower triangle):  
                                           cosx z β=               (A2) 

                                           siny z β=               (A3) 
 
 

Thus, according to (A1), 
 

                cos sin (cos sin )z z i z z iβ β β= + = + β  (A4) 
 

Using Euler's formula [see (A11)-(A16)], one obtains: 
 

                                           exp( )z z iβ=  (A5) 
 

The complex number * exp( )z x iy z iβ= − = −  is called the complex 
conjugate of z. 
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Elementary rotation operator 
 
 Consider a complex number r which has a modulus |r| = 1 and 
the argument a : 
 

                          r iexp( ) cos siniα α= = + α  (A6) 
 

Multiplying a complex number such as  
 

exp( )z z iβ=  
 

by r leaves the modulus of z unchanged and increases the argument by 
a: 
 

                          (i ia izr z e e z e )β β α+= =  (A7) 
 

Equation (A7) describes the rotation of the vector Oz by an angle a 
(see Figure A.2).  We can call r, the elementary rotation operator. 
 
 
 

                                       

z

rz

b

a

0  
 

 
Figure A.2.  Effect of the rotation operator r = exp(ia )  on the 
complex number  z = |z|exp(ib ). 
 

 Note: Although more complicated, the rotation operators in the 
density matrix treatment of multipulse NMR are of the same form as 
our elementary operator [cf.(B45)].  
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 Example 1.  A − 90o (clockwise) rotation (see Figure A.3) 
 

Let                       b a= =90 90o o;  -
 

Then, from (A4 and A6), 
 

                        o o(cos90 sin 90 )z z i i z= + =

i−

 (A8) 

                         (A9) o ocos( 90 ) sin( 90 )r i= − + − =
 

The product 
 

                                  ( )zr i z i z= − =  (A10)  
 

is a real number (its argument is zero). 
 
  

                                         

b = 90o

zr

z

a = - 90o

 
 

Figure A.3.  Effect of the rotation operator . ( )o90i α− = −  

 
 

 Equation (A10) tells us that the particular operator − i  effects 
a 90o CW (clockwise) rotation on the vector z.  The operator +i would 
rotate z by 90o CCW.  Two consecutive multplications by i result in a 
180o rotation.  In other words, an i2 operator ( 1) orients the vector 
in opposite direction. 

-

 
 Example 2.  Powers of i (the "star of i") 
 
 Since i represents a 90o CCW rotation, successive powers of i 
are obtained by successive 90o CCW rotations (see Figure A.4). 
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i 1/2
i 3/2

i 5/2                                                                                                      i 7/2

i 2, i 6, ...                                                        i o, i 4, i 8, ...

         i, i 
5, ...

   i 3, i 7, ...  
 
 

Figure A.4.  The star of i.  
 
 
Series expansion of  ex,  sin x,  cos x,  and  eix 
 
 The exponential function describes most everything happening 
in nature (including the evolution of your investment accounts).  The 
ex series is 
 
  ex = 1 + x + x2/2! + x3/3! + . . . (A11) 
 
The sine and cosine series are: 
 
  sin x = x − x3/3! + x5/5! − x7/7! + . . . (A12) 
      
  cos x = 1 − x2/2! + x4/4! − x6/6! + . . . (A13) 
 
The eix series is: 
  eix = 1 + ix − x2/2! − ix3/3! + x4/4! + ix5/5!. . . (A14) 
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Separation of the real and imaginary terms gives 
 
  eix = 1 − x2/2! + x4/4! − x6/6! + . . .  (A15) 
 

                                 + i(x − x3/3! + x5/5! − . . .) 
 

Recognizing the sine and cosine series one obtains the Euler formula 
 

                                         (A16) cos sinixe x i= + x
 
 
Matrix algebra 
 
 Matrices are arrays of elements disposed in rows and columns; 
they obey specific algebraic rules for addition, multiplication and in-
version.  The following formats of matrices are used in quantum 
mechanics: 
 

                           

11 12 1

21 22 2

1 2

. .

. .
. . . . .
. . . . .

. .

n

n

n n nn

a a a
a a a

A

a a a

 
 
 
 =
 
 
  

                                          Square matrix                                  
 

        
[ ]

11

21

11 12 1

1

. . ; .
.

n

n

a
a

A a a a A

a

 
 
 
 = =
 
 
  

 

                         Row matrix                                  Column matrix 
 
Row and column matrices are also called row vectors or column 
vectors.  Note that the first subscript of each element indicates the row 
number and the second, the column number. 
 
Matrix addition 
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 Two matrices are added element by element as follows: 
  

 

11 12 13 11 12 13 11 11 12 12 13 13

21 22 23 21 22 23 21 21 22 22 23 23

31 32 33 31 32 33 31 31 32 32 33 33

a a a b b b a b a b a b
a a a b b b a b a b a b
a a a b b b a b a b a b

+ + +    
    + = + +    
     + + +    


+ 


)

Only matrices with the same number of rows and columns can be 
added. 
 
Matrix multiplication 
 
 In the following are shown three typical matrix multiplications. 
 

 a)  Square matrix times column matrix: 
 

11 12 13 11 11

21 22 23 21 21

31 32 33 31 31

a a a b c
a a a b c
a a a b c

     
     × =     
          

 

 

    c a   i.e.,   c a  
11 11 11 12 21 13 31

21 21 11 22 21 23 31

31 31 11 32 21 33 31

c a b a b a b
b a b a b

c a b a b a b

= + +
= + +
= + +

3

1 1
1

( 1, 2,3j jk k
k

b j
=

= =∑

 
Example:  

1 2 3 1 14
4 5 6 2 32
7 8 9 3 50

     
     × =     
            

 
Each element of the first line of the square matrix has been multiplied 
with the corresponding element of the column matrix to yield the first 
element of the product: 
 

1 1 2 2 3 3 14× + × + × =  
 b)  Row matrix times square matrix: 
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[ ] [
11 12 13

11 12 13 21 22 23 11 12 13

31 32 33

b b b
a a a b b b c c c

b b b

 
 × = 
  

]

)






b

 
 

      i.e.,    c a  
11 11 11 12 21 13 31

12 11 12 12 22 13 32

13 11 13 12 23 13 33

c a b a b a b
c a b a b a b
c a b a b a b

= + +
= + +
= + +

3

1 1
1

( 1, 2,3j k kj
k

b j
=

= =∑

 
 c)  Square matrix times square matrix: 

 

11 12 13 11 12 13 11 12 13

21 22 23 21 22 23 21 22 23

31 32 33 31 32 33 31 32 33

a a a b b b c c c
a a a b b b c c c
a a a b b b c c c

    
    × =    
        

 

 
3

1
jm jk km

k
c a

=

= ∑  

 

For instance, row 2 of the left hand matrix and column 3 of the right 
hand matrix are involved in the obtaining of the element c23 of the 
product.  Example: 

 

0 1 0 0 0
1 11 0 1 0
2 20 1 0 0 0

i
i i

i

−  
  


× − =  

    



 

 

0 / 2 0
1 0 0 0 0 0 0
2

0 / 2 0

i i i i

i i i i

− −  
  =  
  − −  

/ 2

/ 2






 

 
 

 The product inherits the number of rows from the first (left) 
matrix and the number of columns from the second (right) matrix. The 
number of columns of the left matrix must match the number of rows 
of the right matrix.  
 In general the matrix multiplication is not commutative: 
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                                                 AB BA≠  (A17) 
It is associative: 
                                      ( ) ( )A BC AB C ABC= =  (A18) 
and distributive: 
                                        ( )A B C AB AC+ = +  (A19) 
 
The unit matrix is shown below 

                                    [ ]

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
 
 =
 
 
 

1  (A20) 

 
It must be square and it can be any size.  Any matrix remains 
unchanged when multiplied with the unit matrix: 
 
                                        [ ] [ ]A A A× = × =1 1  (A21) 
 
Matrix inversion 
 
 The inverse A of a square matrix A is defined by the relation:  -1

 
                                        [ ]1 1A A A A− −× = × = 1  (A22) 
 
To find : A 1

 1) Replace each element of A by its signed minor determinant. 
The minor determinant of the matrix element ajk is built with the 
elements of the original matrix after striking out row j and column k. 
To have the signed minor determinant, one has to multiply it by 1 
whenever the sum j+k is odd. 

−

 2) Interchange the rows and the columns (this operation is 
called matrix transposition) 
 3) Divide all elements of the transposed matrix by the determi-
nant of the original matrix A. 
 
Example: 
Find the inverse of matrix A. 
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1 2 1 1/ 2 2 / 2 1/ 2
1 2 0 2 2 / 2 0 2 / 2
2

1 2 1 1/ 2 2 / 2 1/ 2

A

  
  

= − = −  
  

− −    







 

   
1)  We replace a11 by 

22 23

32 33

0 2 / 2
0 (1/ 2) ( 2 / 2) ( 2 / 2) 1/ 2

2 / 2 1/ 2

a a
a a

= = × + ×
−

=  

 
This is the minor determinant obtained by striking out row 1 and 
column 1 of the original matrix. 
 We replace a12 by 
 

21 23

31 33

2 / 2 2 / 2

1/ 2 1/ 2

a a
a a

−
− = −  

 
[( 2 / 2) (1/ 2) ( 2 / 2) (1/ 2)] 2 / 2= − − × − × =  

 
and so on, obtaining: 
 

1/ 2 2 / 2 1/ 2

2 / 2 0 2 / 2

1/ 2 2 / 2 1/ 2

 
 
− 
 

−  

 

 
2)  The transposition yields: 

 
1/ 2 2 / 2 1/ 2

2 / 2 0 2 / 2

1/ 2 2 / 2 1/ 2

 −
 

− 
 
  

 

3)  Calculate the determinant of A: 
 
               det(A) = 0 + (1/4) + (1/4) − 0 + (1/4) + (1/4) = 1 
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Divided by 1, the transposed matrix remains unchanged: 

 

1

1/ 2 2 / 2 1/ 2 1 2 1
12 / 2 0 2 / 2 2 0 2
2

1/ 2 2 / 2 1/ 2 1 2 1

A−

  − −
  

= − =  
  
    




− 



 

 
Check:                                    [ ]1A A− × = 1  
 

1 2 1 1 2 1
1 12 0 2 2 0 2
2 2

1 2 1 1 2 1

   −
   

− × −   
   

−      

 

 

 [ ]
4 0 0 1 0 0

1 0 4 0 0 1 0
4

0 0 4 0 0 1

   
   = =   
      

1=  

 
Note:  You will be pleased to learn that: 
 a) There is a shortcut for the inversion of rotation operator 
matrices  because they are of a special kind. 
 b) In our calculations we will need only inversions of rotation 
operators: 
                                              ( ) R RÆ -1

 
Here is the shortcut: 
 

 1)  Transpose R (vide supra) 
 

 2)  Replace each element with its complex conjugate. 
 

 
Example 
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1 2 1
1 2 0 2
2

1 2 1

R

 
 

= − 
 

−  

 

 
1) Transpose: 

 
1 2 1

1 2 0 2
2

1 2 1

 −
 

− 
 
  

 

 
2)  Conjugate:  Because they are all real, the matrix elements remain 
the same: 
 

                            1

1 2 1
1 2 0 2
2

1 2 1

R−

 −
 

= − 
 
  

 

 
Note:  This is the same matrix as in the previous example; its being a 
rotation operator matrix, allowed us to use the shortcut procedure. 
 
Another example: 
 

                                 

1 0 0
0 1 01

0 1 02
0 0

i
i

R
i

i 1

 
 
 =
 
 
 

 

 
(1)   Transpose:  you obtain the same matrix 
 
 
(2)   Conjugate: 
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                         1

1 0 0
0 1 01

0 1 02
0 0

i
i

R
i

i

−

−

1

 
 − =
 −
 − 

 

 
 
Note:  The matrix resulting from the transposition followed by 
complex conjugation of a given matrix A is called the adjoint matrix 
Aadj.  For all rotation operators, 
 
                                                  1 adjR R− =  (A23) 
 
 In other words, our short cut for inversion  is equivalent with finding 
the adjoint of R [see (A23)]. 
 
When                                           A = Aadj 
 
we say that the matrix A is self adjoint or Hermitian.  In a Hermitian 
matrix, every element below the main diagonal is the complex 
conjugate of its symmetrical element above the diagonal 
 
                                             (A24) *

nm mnd d=
   
while the diagonal elements are all real.  The angular momentum, the 
Hamiltonian and density matrix are all Hermitian (the rotation 
operators never are). 
 The matrix algebra operations encountered in Part 1 of this 
book are mostly multiplications of square matrices (density matrix and 
product operators).  Inversion is only used to find reciprocals of 
rotation operators, by transposition and conjugation.  Frequently used 
is the multiplication or division of a matrix by a constant, performed 
by multiplying or dividing every element of the matrix.  The 
derivative of a matrix (e.g., with respect to time) is obtained by taking 
the derivative of each matrix element . 
 
Trigonometric relations 
 
Sum of squared sine and cosine 
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2 2sin cos 1α α+ =  (A25) 

 
Negative angles 
sin( ) sin
cos( ) cos

α α
α α

− = −
− =

 (A26) 

 
Expressing sine and cosine in terms of exponentials 
 

cos
2

i ie eα α

α
−+

=  (A27) 

 

sin
2

i ie e
i

α α

α
−−

=  (A28) 

 
 Demo: Use Euler's formula (A16)  e icos siniα α α± = ±  
 
Sum and difference of two angles 
 
sin( ) sin cos cos sinα β α β α± = ± β  (A29) 
cos( ) cos cos sin sinα β α β α± = ∓ β  (A30) 
 
 Demo: 

       
1

2

cos sin

cos sin

i

i

z e i

z e i

α

β

α α

β β±

= = +

= = ±
 

 ( )
1 1 (cos sin )(cos sin )i iz z e i iα β α α β±= = + ± β  

               

(cos cos sin sin ) (sin cos cos sin )iα β α β α β α= + ±∓ β  
               cos( ) sin( )iα β α= ± + ± β  
 
 
 
 
Angle 2a 
 

sin 2 2sin cosα α= α  (A31) 
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2 2 2cos 2 cos sin 2cos 1α α α α= − = −  (A32) 
 

 Demo:  Make  b = a  in (A29),(A30).  Use (A25)  for the last form. 
 
Angle 3a 
 

3sin 3 3sin 4sinα α= − α  (A33) 
3cos3 4cos 3cosα α= − α  (A34) 

 
 Demo:  Make b=2a in (A29),(A30),  then use (A31),(A32) and  
 eventually (A25). 
 
Relations used for AX   2 systems 

2 2
2 1 cos 2 2cos

2 4

i ie eα ααα
−+ +

= =
+

 (A35) 

2 2sin 2cos sin
2 4

i ie e
i

α ααα α
−−

= =  (A36) 
 

Demo: (A35) is a corollary of (A32) and (A36) is a corollary of 
(A31).  Use (A27), (A28) to obtain the exponential form.  Note 
the 1-2-1 triplet structure in (A 35).  

 
Relations used for AX   3 systems 

3 3
3 cos3 3cos 3 3cos

4 8

i i ie e e e iα α αα αα
− −+ + +

= =
α+

 (A37) 

3 3
2 sin 3 3sincos sin

4 8

i i i ie e e e
i

α α αα αα α
− −+ + −

= =
α−

 (A38) 
 

Demo:  (A37) is a corollary of (A34).  Relation (A38) can be 
obtained by rewriting (A33) as  
sin sin sin ( cos ) sin cos sin3 3 4 1 42 2a a a a a a a= - - = -  
Note the 1-3-3-1 quartet structure in (A37). 

 
Relations used for AX systems  
 

cos( ) cos( )cos cos
2

α β αα β β− + +
=  (A39)    
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cos( ) cos( )sin sin
2

α β αα β − − +
=

β
 (A40)  

cos( ) cos( )sin sin
2

α β αα β − − +
=

β
 (A41) 

sin( ) sin( )sin cos
2

α β αα β − + +
=

β
 (A42)  

 
Demo: Introduce (A29) or (A30) in the second member of the 
equalities above. 
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APPENDIX B:  DENSITY MATRIX FORMALISM 
 
Wave functions and density matrix 
 
 The density matrix is a tool used to describe the state of a spin 
ensemble as well as its evolution in time.  It allows the passage from 
the probabilistic treatment of a system of a few spins to the statistical 
treatment of a large ensemble of such systems. 
 Since we are interested in the magnetization we want to express 
this observable in terms of the wave function φ of the system.  Let us 
concentrate on one of the nuclei in the system (e.g., nucleus A).  The x 
component of the magnetic moment of nucleus A has the expectation 
value: 
                            xA xA A xAIµ ϕ µ ϕ γ ϕ ϕ= =  (B1) 
 
where IxA is the operator of the x-component of the angular momentum 
of nucleus A in the given system.  For instance, in an AX system the 
IxA matrix is 

                                         

0 1 0 0
1 0 0 01
0 0 0 12
0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                 [see (C12)] 

 
 In order to calculate the macroscopic magnetization, we have to 
take the average (denoted by a bar) over the whole ensemble: 
                              o oxA xA A xAM N N Iµ γ ϕ ϕ= =  (B2) 
 
where No is the number of systems per unit volume, equal to the 
number of A spins per unit volume.  Similar equations can be written 
for every component and for every nucleus in the system. 
 In the Schrödinger representation IxA is a time independent 
operator, therefore the time dependence of MxA is contained in the 
wave function ϕ of each system.  This, in turn, may be expressed as a  
 
 
 
linear combination of the eigenstates n  of the system: 
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1

N

n
n

c nϕ
=

=∑  

 

N=number of quantum states of the system 
 

Here again we observe that the eigenfunctions n  are time independ-
ent (solutions of the time independent Schrödinger equation), so the 
time dependence is contained only in the coefficients cn.  In order to 
introduce these coefficients in the expression (B2), we put 
 

xAIϕ ϕ  

in matrix form.  The "ket" ϕ  is a column matrix: 

                                          

1

2

.

.

n

c
c

c

ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The "bra"  ϕ   is a row matrix 

                              * * *
1 2 . . nc c cϕ ⎡ ⎤= ⎣ ⎦  

 
The angular momentum operator IxA is an N by N square matrix. 

11 12 1

21 22 2

1 2

. .

. .
. . . . .
. . . . .

. .

N

N

N N NN

I I I
I I I

I I I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The subscript "xA" has been omited to simplify the writing. 
 
 
 Using the expressions for ϕ , |IxA|, and ϕ  on the previous 
page, we obtain: 
 



 
 
 
 
 
 
 
122     Appendix B 

xAIϕ ϕ * * *
1 2 . . Nc c c⎡ ⎤= ⎣ ⎦  

 

                             

11 12 1 1

21 22 2 2

1 2

. .

. .
. . . . . .
. . . . . .

. .

N

N

N N NN N

I I I c
I I I c

I I I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥× ×
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

*
nm m n

 

 
1

2

* * * *
1 2 . . .

.

m m
m

m m
m

n n nm m
n m n m

N m m
m

I c

I c

c c c c I c I c c

I c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤= × = =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

∑

∑

∑∑ ∑∑

∑

 
  (B4) 
We have obtained a compact expression of 

                                                     xAIϕ ϕ  
 

In order to introduce it in the expression (B2) of the magnetization we 
have to take its average over the whole ensemble of systems. The 
matrix elements Imn are characteristic for the system.  They are 
identical for all the systems in our macroscopic ensemble.  Therefore 
in (B4) only the product  c c   has to be averaged over the ensemble 
and we get 

m n
*
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*

oxA A nm m n
n m

M N I cγ= c∑∑  (B5) 

 

where Inm are the matrix elements of the operator IxA.  The only time 
variable elements in (B5) are the averaged products  
                                                   *

m nc c .   
There are N2 such products which, arranged in a square table, form the 
density matrix: 

   

11 12 1

21 22 2

1 2

. .

. .
. . . . .                         (B6)
. . . . .

. .

N

N

N N NN

d d d
d d d

D

d d d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
with                                        *

mn m nd c c=  (B7) 
 
We notice that   , i.e., D is a Hermitian matrix. *

nm mnd d=
 
Density matrix and magnetizations 
 
 We rewrite (B5) making use of the expression (B7) 

                       
*

o oxA A nm mn A nm nm
n m n m

M N I d N Iγ γ= = d∑∑ ∑∑  (B8) 

 
Relation (B8) represents the practical mode of calculating an 
observable magnetization component (in our case MxA) when the 
density matrix D is known: 
 Multiply every matrix element of IxA with the complex conjugate 
of the corresponding element of D and add all the products. Multiply 
the sum by NoγA . 
 
 
 
 It is convenient to express the factor NoγA  in terms of the 
equilibrium magnetization MoA: 
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2 2

o
o

( 1)
3

A
A

N I I BM
kT

γ +
= o  (B9) 

 
Note that MoA is always a positive quantity, the absolute value of the 
equilibrium magnetization for nucleus A.  For I = 1/2 the expression 
(B9) becomes: 

                                          
2 2

o
o 4

A
A

N BM
kT

γ
= o  (B10) 

 
In (I.3) we have introduced the quantity   

                                   oAA A Bhp
kT kT kT

γν ω
= = =  (B11) 

 
related to the Boltzmann factor of nucleus A.  In accordance with our 
sign convention (negative γ ) this can be rewritten as   

                                              oABp
kT
γ

= −  (B12) 

and (B10) becomes 

                                          o
o 4

A
A

N pM γ
= −  

The factor o AN γ  in (B8) can now be written in the more convenient 
form 

                                          o
4

AN
p

γ = − oAM  (B13) 

 
For nucleus X (see I.4) the factor is  

                                          o o
4

X XN M
q

γ = −  

 
Let us apply the "recipe" for finding the magnetization components to  
 
 
 
the system AX (two spin 1/2 nuclei).  The number of states is N=4 and 
the (Hermitian) density matrix has the rank 4: 
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

d d d d
d d d d

D
d d d d
d d d d

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
where    and  djj = real  (*

kj jkd d= *
jj jjd d= ). 

 The angular momentum components for the AX system are 
given in (C12) through (C15).  We have for instance 

  

1 0 0 0
0 1 0 01
0 0 1 02
0 0 0 1

zAI

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

                              (B14) 

   
in which only four matrix elements out of 16 are nonvanishing. 
 Using (B8) and (B14) in this particular case we get: 

                       3311 22 444
2 2 2 2zA oA

dd d dM M
p

⎛ ⎞= − − + −⎜ ⎟
⎝ ⎠

 

                             ( 11 22 33 44
2

oA )M d d d d
p

= − − + −  (B15) 

 
In the x direction 

  

0 1 0 0
1 0 0 01                                (B16)
0 0 0 12
0 0 1 0

xAI

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 
 
 
 
 
and the "recipe" leads to 
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                      ( )12 21 34 43
2 * * * *xA oAM M d d d d
p

= − + + +  (B17) 

 

In the same way we obtain 

                       ( )12 21 34 43
2 * * * *yA oA
iM M d d d d

p
= − + −  (B18) 

 

 It is always convenient to combine Mx and My in one complex 
quantity, the transverse magnetization 
 

                                             T x yM M iM= +  (B19) 
 

This leads to the simplified form 

                                 ( 12 34
4 * *TA oAM M d d
p

= − + )  (B20) 

 The magnetization components for the other nucleus of the 
system, nucleus X, are given by 

                            ( 11 22 33 44
2

zX oX )M M d d d d
q

= − + − −  (B21) 

                            ( 13 24
4 * *TX oXM M d d
q

= − + )  (B22) 

 

 This is equivalent to calculating the trace (sum of diagonal 
elements) of the product I D×  : 
                                      (nm mn

n m
)I d Tr I D= ×∑∑  (B23) 

 
The density matrix at thermal equilibrium 
 
 At equilibrium the nondiagonal elements are null because of the 
random phase distribution of the complex coefficients cm. We denote 
with φm the phase of the complex  quantity cm: 
                                          exp( )m m mc c iφ=  (B24) 
 
 
 
 
A nondiagonal matrix element is 
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                            [ ]* exp ( )mn m n m n m nd c c c c i φ φ= = ⋅ −  (B25) 
 

The phase difference φm − φn can have any value within 0 and 2π 
with equal probability.  The complex number exp[i(φm φn)], 
described as a vector in the complex plane, may be oriented in any 
direction. The average of a multitude of such vectors is null. 

−

 The diagonal elements are not null since φm − φm= 0. 
 

                                           2*
mm m m md c c c= =  (B26) 

 

In quantum mechanics  2
mc   is the probablity of finding the system 

in the state m ; therefore dmm = Pm is the population of this state. 
The density matrix at equilibrium is 

   

1

2

0 . . 0
0 . . 0
. . . . .                          (B27)
. . . . .
0 0 . . N

P
P

D

P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
where    (normalized populations). 1nP =∑
 
Evolution of the density matrix between pulses 
 
 In the absence of the r.f. excitation the Hamiltonian H accepts 
the kets n  as eigenfunctions: 
 
                                               nn E n=H  (B28) 
 
and the Schrödinger equation 

                                            
i t

∂ϕ ϕ
∂

−
⋅ =H  

 
becomes: 
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d
d

n
n n

c n c E
i t

−
⋅ =∑ ∑ n  (B29) 

 
Rearranging (B29) gives 

                                 
d 0
d

n
n n

cc E n
i t

⎡ ⎤⎛ ⎞+ ⋅ ⋅ =⎜ ⎟⎢⎝ ⎠⎣ ⎦
∑ ⎥  (B30) 

 
Due to the orthogonality of the eigenfunctions, (B30) is satisfied only 
if each term of the sum is null: 

                                           
d 0
d

n
n n

cc E
i t

+ ⋅ =  (B31) 

Hence 

                                              
d1
d

n

n

c iE
c t

n−
⋅ =  (B32) 

or 
 

                                             ( )d ln
d

n
n

iEc
t

−
=  (B33) 

 
Integrating (B33) yields: 

                                            ln n
n

iEc t C= − +  (B34) 

 

                                     exp exp( )n
n

iEc t−⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

C

C

 (B35) 

 
The integration constant C may be related to the value of cn at time 

.  This gives  0t = (0) exp( )nc =   and (B35) becomes 

                                      (0) exp n
n n

iEc c t−⎛= ⋅ ⎜
⎝ ⎠

⎞
⎟  (B36) 

 
Knowing the evolution of all cn coefficients will allow us to predict 
the time variation of the density matrix, hence that of the 
 
magnetization: 
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( )* *(0) (0) exp m n

mn m n m n

i E E
d c c c c t

− −⎛ ⎞
= = ⋅ ⋅ ⎜ ⎟

⎝ ⎠
 

 

                                       (0) exp( )mn mnd i tω= ⋅ −  (B37)  
 

We have demonstrated here the relation (I.13) used in the density 
matrix treatment to describe the evolution between pulses.  The popu-
lations are invariable because  Em − Em= 0  (relaxation processes are 
neglected throughout this book). 
 
Effects of radiofrequency pulses 
 
 We have to find the time evolution of the density matrix under 
a given Hamiltonian, as we did in the previous section, but there are 
two things that make the problem more complicated.  
 First, the Hamiltonian is now time-dependent (radiofrequency 
magnetic field).  This problem can be circumvented by describing the 
evolution of the system in a rotating frame, in which the rotating 
magnetic field appears as an immobile vector B1, while the main 
magnetic field Bo is replaced by  
 

o trB B ω γ∆ = −  
 

The resultant of B1 and DB is the effective field Beff (Figure B.1). 
 The field B1  is usually much larger than DB and the effective 
field practically is B1.  The Hamiltonian in the rotating frame is then 
 

                                               1 xB Iγ=H  (B38)  
 

as we have assumed that B1 is applied along the x axis of the rotating 
frame.  For comparison, in the absence of the r.f. field, the Hamilto-
nian in the rotating frame is 
                                              zBIγ= ∆H  (B39)  
 

while in the laboratory frame it has the expression 
 

                                              o zB Iγ=H  (B40) 
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                            x

y

z

|

B1

Beff

D B =Bo - w / | gtr

 
 

 
Figure B.1.  The effective magnetic field Beff in the rotating frame. 
Ox, Oy = axes of the rotating frame ; wtr = angular frequency of r.f. 
transmitter (angular velocity of the rotating frame)  

 
 
 
 Now we come to the second difficulty which prevents us from 
using the same approach as in the previous section:  the new Hamilto-
nian (B38) does not have the kets n  as eigenfunctions because we 
have passed from B0 to B1.  We have to use a more general equation 
which describes the evolution of D under any Hamiltonian: 
 

                                         
d (
d
D i D
t
= −H H )D  (B41) 

 
the demonstration of which is given separately in the following 
section.  The solution of (B41) is: 
 
                       ( ) ( )( ) exp / (0)exp /D t i t D i t= − H H  (B42) 
 
 
 

This can be verified by calculating the time derivative of (B42): 



 
 
 
 
 
 
 

Density Matrix Formalism     131 

( ) (d d exp / (0)exp /
d d
D i t D i t
t t

⎡ ⎤= −⎢ ⎥⎣ ⎦
H H )  

( ) ( )d (0)exp / exp /
d

Di t i t
t

⎡ ⎤+ − ⎢ ⎥⎣ ⎦
H H  

( ) ( )dexp / (0) exp /
d

i t D i t
t

⎡ ⎤+ − ⎢ ⎥⎣ ⎦
H H  

( ) ( )exp / (0)exp / 0i i t D i t−
= −

H H H +  

( ) ( )exp / (0) exp /ii t D i t+ −
HH H  

 

( ) ( ) ( )/ / /i D D i i D= − + = −H H H DH  
 
In the particular case of a strong r.f. field B1 applied along the x axis 
of the rotating frame we have, according to (B38): 
 

                                       1/ x xi t i B I t i Iγ α= =H  (B43)    

where 1B tα γ=   is the rotation angle of the magnetization around B1 
in the time t (pulse duration).  Relation (B42) becomes  

( ) ( )exp (0)expx xD iI D iIα α= − −  

                                            1 (0)R D R−=  (B44) 
 

where R is the  rotation operator [cf (A6)-(A7)]; D(0) and D denote 
the density matrix before and after the pulse.  We have thus 
demonstrated the relation (I.8). 
 In order to get an explicit matrix expression for R we have to 
calculate 
                                            exp( )x xR i Iα α=  (B45) 
 

using a series expansion of the exponential [see(A11)], 

                     
2 2 3 3( ) ( )1 . . .

2! 3!
x x

x x
i I i IR i Iα
α αα= + + + +  (B46) 

 
 
The powers of Ix may easily be calculated if one notices that 
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                                      [ ]2 1
4xI ⎛ ⎞= ⋅⎜ ⎟

⎝ ⎠
1  (B47) 

 

                                             
0 11
1 02xI ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 

[ ]2 1 01 1
0 14 4xI ⎡ ⎤ ⎛ ⎞= = ⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

1   

 

                           3 0 11 1 1 2
1 04 8 8x x xI I I⎡ ⎤ ⎛ ⎞= = = ⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

 

 

[ ]4 1 01 1
0 116 16xI ⎡ ⎤ ⎛ ⎞= = ⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

1  

In general, for n = even we have: 

                                               [ ]1 01 1
0 12 2

n
x n nI ⎡ ⎤ ⎛ ⎞= = ⋅⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

1  (B48) 

and for n = odd 

                                         
0 11 1 2
1 02 2

n
x n n xI I⎡ ⎤ ⎛ ⎞= = ⋅⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

 (B49) 

 
By using (C12) and (C14) one can verify that (B48) and (B49) are 
also true for IxA and IxX in a two spin system with I=1/2. 
 Introducing (B48) and (B49) in (B46) and separating the even 
and odd terms gives: 

                  
2 4 1 0( / 2) ( / 2)1 . . .

0 12! 4!xRα
α α⎡ ⎤ ⎡ ⎤

= − + − ×⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 

 

                        
3 5 0 1( / 2) ( / 2)/ 2 . . .

1 03! 5!
i α αα
⎡ ⎤ ⎡ ⎤

+ − + − ×⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 (B50) 

 
Recognizing the sine (A12) and cosine (A13) series expansions we 
can write 
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[ ] ( )
1 0 0 1

cos sin cos sin 2
0 1 1 02 2 2 2x xR i iα

α α α α⎡ ⎤ ⎡ ⎤
= ⋅ + ⋅ = ⋅ + ⋅⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
1 I  

     
cos 0 0 sin

2 2
⎤
⎥
=⎥

⎥
⎥⎦

0 cos sin 0
2 2

i

i

α α

α α

⎡ ⎤ ⎡
⎢ ⎥ ⎢

= +⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

cos sin
2

sin cos
2 2

i

i

2
α α

α α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(B51) 

 
For nucleus A in an AX system the rotation operator is 

                   

cos sin 0 0
2 2

sin cos 0 0
2 2

0 0 cos sin
2

0 0 sin cos
2 2

x

i

i
R

i

i

α

α α

α α

2
α α

α α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 (B52) 

 
If the pulse is applied along the y axis, relations similar to (B48), 
(B49) apply: 

                         
[ ]1 for  n=even

2
n
y nI ⎛ ⎞= ⋅⎜ ⎟

⎝ ⎠
1

 (B53) 

                         

1 (2 ) for  n=odd
2

n
y ynI I⎛ ⎞= ⋅⎜ ⎟

⎝ ⎠
 

 

and we obtain 

                    exp( ) cos [ ] sin (2 )
2 2y y yR i I i Iα
α αα= = ⋅ + ⋅1  (B54) 

 

 Appendix C contains angular momentum components and 
rotation operators in matricial form, for a variety of spin systems and 
pulses.  The reader may check some of those results by making         α 
= 90o  or  α = 180o  in the relations above. 
 If the radiofrequency field B1 is applied along the − x axis, it 
has the same effect as a pulse along the +x axis, only the sense of 
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rotation is reversed (left hand instead of right hand rule).  The result 
of such a pulse is therefore a rotation by − α around Ox : 

     ( ) ( ) exp( ) cos [ ] sin (2 )
2 2x x x xR R i I iα α Iα αα− −= = − = ⋅ − ⋅1  (B55) 

 
 It is possible to extend the DM treatment to  pulses with any 
phase (not only the four cardinal phases x, y, − x, − y) and/or off 
resonance pulses (Beff does not coincide with B1).  We will not discuss 
them here because, as shown in the second part of the book, it is more 
convenient to handle them by means of the Product Operator 
formalism (see Appendix M). 
  
Demonstratiom of (B41) 
 
In order to demonstrate that 

                                        
d ( )
d
D i D D
t
= −H H  

 
we follow the procedure used by Slichter (see Suggested Readings).  
We start with the (time dependent) Schrödinger equation 

                                            
i t

∂ϕ ϕ
∂

−
⋅ =H  

where 

                                              
1

N

n
n

c nϕ
=

=∑  

 
with the observation that n  are not assumed to be eigenfunctions of 
H.  Combining the last two equations gives 

                                 
1 1

d
d

N N
n

n
n n

c n c
i t= =

−
⋅ =∑ ∑ H n  (B56) 

 
 
 
If we premultiply this equation with the bra m  we get 
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1 1

d
d

N N
n

n
n n

c m n c m n
i t= =

−
=∑ ∑ H  (B57) 

 

The choice of normalized and orthogonal functions for the basis set 
n  implies  

                               0 form n m n= ≠  

                               1 form n m n= =  (B58) 
 

On the other hand m H n  is the matrix element Hmn in the matrix 
representation of the Hamiltonian, so (B57) becomes 

                                              
1

d
d

N
n

n mn
n

c c H
i t =

−
=∑  (B59) 

 

If we consider now the product 
 

                                                 *
jk j kp c c=  (B60) 

 

its time derivative will be 
 

*
*d d d

d d d
jk j k

k j

p c cc c
t t
= +

t
 

 
*

*d d
d d

j k
k j

c cc c
t t

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 

 
*

*

1 1

N N

n jn k j n kn
n n

i ic H c c c H
= =

⎡ ⎤− −⎛ ⎞ ⎛= + ⎞
⎢ ⎥⎜ ⎟ ⎜

⎝ ⎠ ⎝
⎟
⎠⎣ ⎦

∑ ∑  

 

* * *

1 1

N N

j n kn n k jn
n n

i c c H c c H
= =

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑ ∑  

 
The change of sign comes from  ( − i)* = i. 
If we take into account that H is Hermitian (H*

kn = Hnk) we get 
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1 1

d
d

N N
jk

jn nk jn nk
n n

p i p H H p
t = =

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑ ∑  (B61) 

 
 

 The density matrix element djk is nothing other than the product 
pjk averaged over the whole ensemble: 
 

                                                  jk jkd p=  
 

On the other hand the Hamiltonian and its matrix elements are the 
same for all the systems within the ensemble, they are not affected by 
the operation of averaging.  Taking the average on both sides of (B61) 
yields 

                              
1 1

d
d

N N
jk

jn nk jn nk
n n

d i d H H d
t = =

⎛ ⎞= −⎜
⎝ ⎠
∑ ∑ ⎟  (B62) 

 
According to the matrix multiplication rule (see Appendix A) the 
sums in (B62) represent matrix elements of the products DH and HD, 
so (B62) can be written as  
 

( ) ( ) ( )d
d jk jk jk

jk

D i iD D D
t

⎛ ⎞ ⎡ ⎤= − = −⎜ ⎟ ⎣ ⎦⎝ ⎠
H H H H D  

 
This demonstrates (B41) since the time derivative of a matrix is 
performed by taking the derivative of each element. 
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APPENDIX C:  ANGULAR MOMENTUM  
AND ROTATION OPERATORS 

 
System (spin):  A(1/2) 

                    
0 1 01 ;
1 0 02 2x y

i
I I

i
1 −⎡ ⎤ ⎡

= =⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎦

 (C1) 

 

  
1 0 0 11 ;
0 1 0 02z x yI I iI⎡ ⎤ ⎡

= +⎢ ⎥ ⎢−⎣ ⎦ ⎣

⎤
= ⎥

⎦
 (C2) 

 

           
cos sin cos sin

2 2 2 2;
sin cos sin cos

2 2 2 2

x y

i
R R

i
α α

α α α α

α α α

⎡ ⎤ ⎡
⎢ ⎥ ⎢

= =⎢ ⎥ ⎢
⎢ ⎥ ⎢−⎢ ⎥ ⎢⎣ ⎦ ⎣

α

⎤
⎥
⎥
⎥
⎥⎦

 (C3) 

 

               90 90

1 11 1;
1 12 2x y

i
R R

i
⎡ ⎤ ⎡

= =⎢ ⎥ ⎢−⎣ ⎦ ⎣

1
1
⎤
⎥
⎦

1
0
⎤

= ⎥
⎦

 (C4) 

 

                     (C5) 180 180

0 0
;

0 1x y

i
R R

i
⎡ ⎤ ⎡

= ⎢ ⎥ ⎢−⎣ ⎦ ⎣
 
 
System (spin):  A(1) 
 

            
0 1 0 0 0

1 11 0 1 ; 0
2 20 1 0 0 0

x y

i
I I i

i

−⎡ ⎤ ⎡
⎢ ⎥ ⎢= =⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

i
⎤
⎥− ⎥
⎥⎦

 (C6) 

 

                
1 0 0 0 1 0
0 0 0 ; 2 0 0 1
0 0 1 0 0 0

z x yI I iI
⎡ ⎤ ⎡
⎢ ⎥ ⎢= + =⎢ ⎥ ⎢
⎢ ⎥ ⎢−⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 (C7) 
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cos 1 2 sin cos 1
1 2 sin 2cos 2 sin
2

cos 1 2 sin cos 1
x

i

R i i

i
α

α α α

α α

α α

⎡ ⎤

α

α

+ −
⎢ ⎥

= ⎢ ⎥
⎢ ⎥

− +⎢ ⎥⎣ ⎦

 (C8) 

 

                

1 cos 2 sin 1 cos
1 2 sin 2cos 2 sin
2

1 cos 2 sin 1 cos
yRα

α α α

α α α

α α α

⎡ ⎤+ −
⎢ ⎥

= −⎢ ⎥
⎢ ⎥

− − +⎢ ⎥⎣ ⎦

 (C9) 

 

90 90

1 2 1 1 2 1
1 12 0 2 ; 2 0 2
2 2

1 2 1 1 2 1
x y

i

R i i R

i

⎡ ⎤ ⎡−
⎢ ⎥ ⎢

= = −⎢ ⎥ ⎢
⎢ ⎥ ⎢
− −⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥⎦

⎥
⎥

(C10) 

 

       (C11) 180 180

0 0 1 0 0 1
0 1 0 ; 0 1 0
1 0 0 1 0 1

x yR R
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢= − = −⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 
System (spin):  A(1/2) X(1/2) 
 
 

       

0 1 0 0 0 0 0
1 0 0 0 0 0 01 1;
0 0 0 1 0 0 02 2
0 0 1 0 0 0 0

xA yA

i
i

I I
i

i

−⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢

⎤
⎥
⎥
⎥−

⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎥
⎦

 (C12) 

 

     

1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 01 ;( )
0 0 1 0 0 0 0 12
0 0 0 1 0 0 0 0

zA x y AI I iI

⎡ ⎤ ⎡
⎢ ⎥ ⎢−⎢ ⎥ ⎢= + =
⎢ ⎥ ⎢
⎢ ⎥ ⎢−⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

 (C13) 
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0 0 1 0 0 0 0
0 0 0 1 0 0 01 1;
1 0 0 0 0 0 02 2
0 1 0 0 0 0 0

xX yX

i
i

I I
i

i

−⎡ ⎤ ⎡
⎢ ⎥ ⎢ −⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

(C14) 

 
 

   

1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 11 ;( )
0 0 1 0 0 0 0 02
0 0 0 1 0 0 0 0

zX x y XI I i I

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= + =
⎢ ⎥ ⎢−
⎢ ⎥ ⎢−⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

 (C15) 

 
 

90 90

1 0 0 1 1 0 0
1 0 0 1 1 0 01 1;

0 0 1 0 0 1 12 2
0 0 1 0 0 1 1

xA yA

i
i

R R
i

i

⎡ ⎤ ⎡
⎢ ⎥ ⎢−⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢ −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

(C16) 

 
 

         (C17) 180 180

0 0 0 0 1 0 0
0 0 0 1 0 0 0

;
0 0 0 0 0 0 1
0 0 0 0 0 1 0

xA yA

i
i

R R
i

i

⎡ ⎤ ⎡
⎢ ⎥ ⎢−⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢ −⎣ ⎦ ⎣

 
 

     90 90

1 0 0 1 0 1 0
0 1 0 0 1 0 11 1;

0 1 0 1 0 1 02 2
0 0 1 0 1 0 1

xX yX

i
i

R R
i

i

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢−
⎢ ⎥ ⎢ −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

(C18) 
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         (C19) 180 180

0 0 0 0 0 1 0
0 0 0 0 0 0 1

;
0 0 0 1 0 0 0

0 0 0 0 1 0 0

xX yX

i
i

R R
i

i

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢−
⎢ ⎥ ⎢ −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

 
 Examples of selective rotation operators, affecting only one of 
the two possible transitions of nucleus X:  2-4  or  1-3. 
 
 

90 (24) 90 (24)

02 0 0 0 2 0 0

0 1 0 0 1 0 11 1;
2 2 0 20 0 2 0 0 0

0 0 1 0 1 0

x y

i
R R

i

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢

= =⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢ −⎣ ⎦ ⎣ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

  (C20) 
 
 

        (C21) 180 (24) 180 (24)

1 0 0 0 1 0 0 0
0 0 0 0 0 0 1

;
0 0 1 0 0 0 1 0
0 0 0 0 1 0 0

x y

i
R R

i

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢ −⎣ ⎦ ⎣

 
 

13 1390 ( ) 90 ( )

1 10 0 0

0 00 2 0 0 2 01 1;
2 21 10 0 0

0 00 0 2 0 0

x y

i

R R
i

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
−⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

1 0

1 0

2
  (C22) 
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180 (13) 180 (13)

0 0 0 0 0 1 0
0 1 0 0 0 1 0 0

; (C23)
0 0 0 1 0 0 0

0 0 0 1 0 0 0 1

x y

i

R R
i

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 
 

Selective rotation operators for the nucleus A (transition  1-2  or  3-4) 
can be written in a similar manner. 
 
System (spin):  A(1) X(1/2) 
 
The energy states are labeled according to the figure below. 
 
 

A

A

A

A

X

X

X

E

E

E

E

E

E

1/21

1/21

1/21

1/20

1/21

1/20

1

2

3

4

5

6  
 
 

0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 1 01 (C24)
0 1 0 0 0 12
0 0 1 0 0 0
0 0 0 1 0 0

xAI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 01 (C25)
0 0 1 0 0 02
0 0 0 0 0 1
0 0 0 0 1 0

xXI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 

Iy can be written in the same way, taking (C6) and (C1) as starting 
points.  
 Examples of rotation operators for the AX(1, 1/2) system: 
 
 

90

1 0 2 0 1 0

0 1 0 2 0 1

2 0 1 0 2 01 (C26)
2 0 2 0 1 0 2

1 0 2 0 1 0

0 1 0 2 0 1

yAR

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
 

180

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
                     (C27)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

xX

i
i

i
R

i
i

i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 
Reciprocals 1R−  of all rotation operators can be found through 
transposition and complex conjugation (see Appendix A). 



 
 
 
 
 
 
 

Angular Momentum and Rotation Operators     143 

Rotations about the z-axis 
 
 These rotation operators are needed in the following section 
(Phase Cycling).  They can be derived in the same way as the x and y 
rotation operators [see (B45) to (B54)], after observing that 
 
 

                    

[ ]1 for  n=even
2

1 (2 ) for  n=odd
2

n
z n

n
z zn

I

I I

⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

1

 (C28) 

 
 For the one spin system A(1/2) we have 
 

                                      
0

0 *z

b
R

bα
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (C29) 

 
with                 cos( / 2) sin( / 2) exp( / 2)b i iα α= + = α  (C30) 
 

 For the two spin system A(1/2)X(1/2) we have 
 

   (C31) 

0 0 0 0 0 0
0 * 0 0 0 0 0

;
0 0 0 0 0 * 0
0 0 0 * 0 0 0 *

zA zX

b b
b b

R R
b b

b b

α α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

    

2

2

0 0 0
0 1 0 0
0 0 1 0
0 0 0 *

zAX zA zX

b

R R R

b

α α α

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (C32) 
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Phase cycling 
 
 This section contains rotation operators for phase cycled pulses. 
The rotation axis for such pulses is situated in the xy plane and makes 
an angle Φ with the x-axis.  In succesive runs, the angle Φ assumes 
different values.  When Φ is equal to 0o, 90o, 180o, or 270o, the 
rotation axis is x, y, x− , or y− , respectively.  The expressions given 
in this section are valid for any value of Φ, even if it is not a multiple 
of 90o.  Such values are seldom used in pulse sequences but they may 
be used to assess the effect of imperfect phases. 
 The rotation operator R90� represents a 90o rotation about an 
axis making the angle Φ with the x-axis.  In order to find the 
expression of R90� , we observe that this rotation is equivalent with 
the following succession of rotations: 
 a.  A rotation by−Φ  (clockwise) about Oz, bringing the  
               rotation axis in line with Ox. 
 b.  A 90o rotation about Ox. 
 c.  A rotation by Φ (counterclockwise) about Oz. 
For the one-spin system A(1/2), using (C29), this leads to 
 

90 ( ) 90z x zR R R RΦ −Φ Φ=  
 

* 0 1 01
0 1 02

b i b
b i b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦*

 

 

              
2

2

* 0 * 1 *1 1
0 * 12 2

b b ib ib
b ib b ib

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (C33) 

 
where  from (C30).  With the new notation exp( / 2)b i= Φ
 
                                        2* exp( )a ib i i= = − Φ  (C34) 
 
the relation (C33) becomes 

                                     90

11
* 12

a
R

aΦ

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (C35) 

 
In a similar way one can demonstrate that 
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                                        180

0
* 0

a
R

aΦ

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (C36) 

 
 For the two-spin system A(1/2)X(1/2) 
 
 

                      90

1 0
* 1 0 01

0 0 12
0 0 * 1

A

a
a

R
a

a

Φ

0⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (C37) 

 
 

                      90

1 0 0
0 1 01

* 0 1 02
0 * 0 1

X

a
a

R
a

a

Φ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 (C38) 

 
 

2

90 90 90

2

1
* 1 11

2 * 1 1
* * * 1

AX A X

a a a
a a

R R R
a a

a a a

Φ Φ Φ

⎡ ⎤
⎢ ⎥− −⎢ ⎥= =
⎢ ⎥− −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

 (C39) 

 
This operator has been used in the DM treatment of INADEQUATE 
[see (I.83)]. 
 One can verify that for  Φ = 0  we have  a = i  and 
                               90 90AX x AXR RΦ =                  [cf.(I.34)] 
 
When  Φ = 90o  we have  a = 1  and 
                               90 90AX y AXR RΦ =                  [cf.(I.101)] 
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 For the 180o pulse, similar calculations lead to 
 
 

                    180

0 0
* 0 0 0

0 0 0
0 0 * 0

A

a
a

R
a

a

Φ

0⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (C40) 

 

                    180

0 0 0
0 0 0

* 0 0 0
0 * 0 0

X

a
a

R
a

a

Φ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 (C41) 

 

                    

2

180

2

0 0 0
0 0 1 0
0 1 0 0
* 0 0 0

AX

a

R

a

Φ

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

 (C42) 

 
 
The 180o operators can be calculated by multiplying the respective 90o 
operator with itself (two successive 90o rotations). 
 
Cyclops 
 
 Even in the simplest one-dimensional sequences, involving one 
single pulse (the "observe" pulse), a form of phase cycling is used in 
order to eliminate the radiofrequency interferences. The observe pulse 
is cycled through all four phases, e.g. clockwise: +x, − y, − x,  +y.  
The f.i.d. phase follows the same pattern.  There will be no 
accumulation unless the reciever phase is also cycled clockwise.  An 
extraneous signal is not phase cycled and it will be averaged out 
because of the receiver cycling, provided the number of transients is a 
multiple of four.  The procedure is known as "cyclops". 
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APPENDIX D:  PROPERTIES OF  
PRODUCT OPERATORS 

 
 A system of m spin 1/2 nuclei has N = 2m states.  The basis set for 
this system consists of N2 product operators (PO) which are  
hermitian matrices.  We summarize here the most significant features of 
these matrices. 

N N×

 
 1. There is only one nonvanishing element per row.  As a 
consequence, any PO has only N nonvanishing elements out of N2 
elements. 
 
 2. There is also only one nonvanishing element per column. 
Properties 1 and 2 are found in the matrices representing angular 
momentum components Ix, Iy, Iz (see Appendix C).  A product of two 
matrices having these properties inherits them. 
 
 3. The nonvanishing elements of a PO are either 1±  or i± . 
 
 4. If Pj and Pk are two product operators from the basis set, the 
trace (sum of diagonal elements) of their product is 
 
                                Tr( )j k jkP P Nδ=  (D1) 
where djk (the Kronecker delta) has the value 
 
                                djk = 0      if  j ≠  k 
                                djk = 1      if  j =  k 
 
 The property (D1) illustrates the orthogonality of the PO's.  The 
product of two different PO's is traceless.  The square of a given PO is 
equal to the unit matrix, therefore its trace is equal to N. 
 
Expressing a given matrix in terms of PO's 
 
 Since the basis set is a complete set, any N×N matrix can be 
expressed as a linear combination of PO's : 
 
               (D2) 2

1 1 2 2 ...            where       L LD c P c P c P L N= + + + =
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 Given the matrix D, the coefficients cj can be determined using the 
orthogonality relation (D1). 
 

                      (D3) 
1 1

Tr( ) Tr( )
m m

j k k j k kj
k k

DP c P P c N Ncδ
= =

= =∑ ∑ j=

 
Therefore 

                            
1 Tr( )jc D
N

= jP  (D4) 

 
 
 In the PO treatment of NMR sequences we do not have to go 
through the routine described above since we start with the density 
matrix expressed in terms of PO's and we have rules for any rotation or 
evolution which give the new density matrix also expressed in terms of 
PO's.  For the same reason, we do not need to know the PO's in their 
matrix form in order to operate with them. 
 The complete basis set for m = 2  (N = 4) is given in table II.1. We 
give in the following pages a few examples of PO's  in matrix form for  
m = 3  (N = 8)  and for  m = 4  (N = 16).  At the end of this appendix a 
computer program can be found (written in BASIC) which can help 
generate all the product operators for  n = 2, 3, or 4.  
 In all the matrices given below as examples, the dots represent 
zeros. 
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1 . . . . . . .
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All the product operators sampled in this appendix have been calculated 
with the program POP (Product OPerators) listed on the following pages.  
It is written in  BASIC, Version CPM-86,  Rev.5.22 by Microsoft. 
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10   REM- PROGRAM "POP" CALCULATES AND PRINTS THE  
11   REM- BASIC OPERATORS ACCORDING TO SORENSEN- 
12   REM- ERNST FOR A SYSTEM OF TWO, THREE, OR FOUR  
13   REM- SPIN 1/2 NUCLEI 
20   DIM D%(256,16),N%(256,16),F%(256),J%(4),J$(4) 
25   DIM B$(256),A(16,16),B(16,16) 
30   PRINT "NUMBER OF SPIN 1/2 NUCLEI (2,3,OR 4)" 
40   INPUT NN% 
45   IF NN%>4 THEN NN%=4 
46   IF NN%<2 THEN NN%=2 
50   REM- NUMBER OF STATES 
60   NS%=2^NN% 
65   IF NN%=2 THEN B$="14 seconds" 
66   IF NN%=3 THEN B$="38 seconds" 
67   IF NN%=4 THEN B$="2 min 46 s" 
68   PRINT "Please wait ";B$ 
70   GOSUB 940 
71   REM- All product operators are now calculated and labeled 
75   PRINT "                        M E N U" 
76   PRINT "                       =========" 
78   PRINT " A - Display a specified product operator" 
80   PRINT " B - Display all product operators" 
82   PRINT " C - Print a specified product operator (hard copy)" 
84   PRINT " D - Print all product operators (hard copy)" 
86   PRINT " E - Express a matrix in terms of product operators" 
88   PRINT " F - Same as E but printed (hard copy)" 
118  PRINT " X - Exit MENU" 
120  M%=14 
125  FOR I%=1 TO M% : PRINT : NEXT I% 
130  INPUT MENU$ 
135  IF MENU$="A" THEN GOSUB 4050 
137  IF MENU$="B" THEN GOSUB 4000 
139  IF MENU$="C" THEN GOSUB 4050 
141  IF MENU$="D" THEN GOSUB 4000 
143  IF MENU$="E" THEN GOSUB 4500 
145  IF MENU$="F" THEN GOSUB 4500 
170  PRINT "   Do you want to join the MENU again ? (Y or N)" 
175  INPUT A$ 
180  IF A$="Y" THEN 75  
935  END 
940  REM- Subroutine 940-3650 to calculate all PO for given NN% 
945  REM- Zero order product operator (unit matrix) 
950  FOR M%=1 TO NS% 
955  N%(0,M%)=M% 
960  D%(O,M%)=1 
965  MEXT M% 
970  F%(0)=0 
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975  REM- First order product operators Ix, Iy, Iz 
980  FOR K%=1 TO NN% 
985  K1%=2^(K%-1) : K2%=K1%*K1% 
990  F%(K2%)=0 : F%(2*K2%)=1 : F%(3*K2%)=0 
995  M%=1 : SG%=1 
1000 FOR C%=1 TO K1% 
1010 N%(K2%,M%)=M%+SG%*K1% 
1020 N%(2*K2%,M%)=M%+SG%*K1% 
1030 N%(3*K2%,M%)=M% 
1040 D%(K2%,M%)=1 
1050 D%(2*K2,M%)=-SG% 
1060 D%(3*K2%,M%)=SG% 
1070 M%=M%+1 
1080 NEXT C%  
1090 SG%=-SG% 
1100 IF M%<=NS% THEN 1000 
1100 NEXT K% 
2000 REM- Second order base operators (Two factor PO's) 
2010 FOR KA%=1 TO NN%-1 
2020 FOR KB%=KA%+1 TO NN% 
2030 FOR JA%=1 TO 3 
2040 FOR JB%=1 TO 4 
2050 K2A%=4^(KA%-1) 
2060 K2B%=4^(KB%-1) 
2070 SA%=JA%*K2A% : SB%=JB%*K2B% 
2080 GOSUB 5000 
2090 NEXT JB% 
2100 NEXT JA% 
2110 NEXT KB% 
2120 NEXT KA% 
3000 REM- Three factor product operators 
3010 IF NN%<3 THEN 3625 
3020 FOR KC%=1 TO NN%-2 
3030 FOR KD%=KC%+1 TO NN%-1 
3040 FOR KB%=KD%+1 TO NN% 
3050 FOR JC%=1 TO 3 
3060 FOR JD%=1 TO 3 
3070 FOR JB%=1 TO 3 
3080 K2C%=4^(KC%-1) : K2D%=4^(KD%-1) : K2B%=4^(KB%-1) 
3090 SC%=JC%*K2C% : SD%=JD%*K2D% : SB%=JB%*K2B% 
3100 SA%=SC%+SD% 
3100 GOSUB 5000 
3120 NEXT JB% 
3130 NEXT JD% 
3140 NEXT JC% 
3150 NEXTKB% 
3160 NEXT KD% 
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3170 NEXT KC% 
3500 REM- Four factor product operators 
3510 IF NN%<4 THEN 3625 
3520 FOR JC%=1 TO 3 
3530 FOR JD%=1 TO 3 
3540 FOR JE%=1 TO 3 
3550 FOR JB%=1 TO 
3560 SA%=JC%+4*JD%+16*JE% 
3570 SB%=64*JB% 
3580 GOSUB 5000 
3590 NEXT JB% 
3600 NEXT JE% 
3610 NEXT JD% 
3620 NEXT JC% 
3625 REM- Operator labeling 
3630 FOR S%=0 TO NS%^2-1 
3635 GOSUB 3900 
3637 NEXT S% 
3640 REM- All product operators are now calculated and labeled 
3641 REM- Arrays d(s,m,), n(s,m), F(s) and B$(s) are filled 
3650 RETURN 
3900 REM- Subroutine 3900-3045 generates label, given s 
3901 B$="[" 
3904 R%=S% 
3908 FOR I%=1 TO NN% 
3912 J%(I%)=R%-4*INT(R%/4) 
3916 R%=INT(R%/4) 
3920 IF J%(I%)=0 THEN J$(I%)="1" 
3924 IF J%(I%)=1 THEN J$(I%)="x" 
3928 IF J%(I%)=2 THEN J$(I%)="y" 
3932 IF J%(I%)=3 THEN J$(I%)="z" 
3936 B$=B$+J$(I%) 
3940 NEXT I% 
3943 B$=B$+"]" 
3945 RETURN 
3950 REM- Subroutine 3950-3995 generates s, given label 
3952 P=0 : S%=0 
3955 FOR I%=1 TO NN% 
3960 IF J$(I%)="1" THEN J%(I%)=0 GOTO 3985 
3965 IF J$(I%)="X" THEN J%(I%)=1 GOTO 3985 
3970 IF J$(I%)="Y" THEN J%(I%)=2 GOTO 3985 
3975 IF J$(I%)="Z" THEN J%(I%)=3 GOTO 3985 
3980 P=1 : GOTO 3995 
3985 S%=S%+4^(I%-1)*J%(I%) 
3990 NEXT I% 
3995 RETURN 
4000 REM- Subroutine 4000-4040 to output all product operators
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4005 IF MENU$="D" THEN MENU$="C" 
4010 FOR S%=0 TO NS%^2-1 
4020 GOSUB 4155 
4030 NEXT S% 
4040 RETURN 
4050 REM- Subroutine 4050-4110 to output one specified PO 
4051 PRINT "Please label desired product operator, e.g. "; 
4052 IF NN%=2 THEN B$="X,Y or 1,Z etc." 
4053 IF NN%=3 THEN B$="X,Y,Z or 1,X,Y etc." 
4054 IF NN%=4 THEN B$="X,Y,X,Z or X,Y,Z,1 etc." 
4055 PRINT B$ 
4056 PRINT "  then press RETURN" 
4060 IF NN%=2 THEN INPUT J$(1),J$(2) 
4070 IF NN%=3 THEN INPUT J$(1),J$(2),J$(3) 
4080 IF NN%=4 THEN INPUT J$(1),J$(2),J$(3),J$(4) 
4090 GOSUB 3950 
4095 IF P>0 THEN 4105 
4100 GOSUB 4155 : GOTO 4107 
4105 PRINT : PRINT : PRINT "Please try again " 
4107 PRINT "Do you want another ? (Y or N)" 
4108 INPUT A$ : IF A$="Y" THEN 4050 
4110 RETURN 
4155 REM- Subroutine 4155-4275 to display or print on PO, given s 
4160 PRINT : PRINT B$(S%)+" =" : PRINT 
4166 IF MENU$="C" THEN 4167 ELSE 4170 
4167 LPRINT : LPRINT B$(S%)+" =" : LPRINT 
4170 FOR M%=1 TO NS% 
4180 FOR I%=1 TO N%(S%,M%)-1 
4190 PRINT " ."; 
4195 IF MENU$="C" THEN 4196 ELSE 4200 
4196 LPRINT " ."; 
4200 NEXT I% 
4210 D%=D%(S%,M%) 
4220 GOSUB 5300 
4230 PRINT D$; 
4235 IF MENU$="C" THEN 4236 ELSE 4240 
4236 LPRINT D$; 
4240 FOR I%=N%(S%,M%)=1 TO NS% 
4250 PRINT " ."; 
4255 IF MENU$="C" THEN 4256 ELSE 4260 
4256 LPRINT " ."; 
4260 NEXT I% 
4265 PRINT 
4266 IF MENU$="C" THEN LPRINT ELSE 4270 
4270 NEXT M% : PRINT : PRINT 
4272 IF MENU$="C" THEN 4273 ELSE 4275 
4273 LPRINT : LPRINT 
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4275 RETURN 
4400 PRINT "Do you want another ? (Y or N)" : INPUT H$ 
4410 IF H$="Y" THEN 4002 
4500 REM- Subroutine 4500-4790 to express a given matrix 
4501 REM- in terms of product operators 
4530 FOR M%-0 TO NS% : FOR N%=0 TO NS% 
4540 A(M%,N%)=0 : B(M%,N%)=0 
4550 NEXT N% : NEXT M% 
4555 PRINT "How many nonvanishing elements in the matrix ?" 
4556 INPUT N 
4560 PRINT "For every nonvanishing element in your matrix" 
4561 PRINT "           d(m,n) = a + i*b" 
4562 PRINT "please enter: m, n, a, b then press RETURN" 
4569 FOR I%=1 TO N 
4570 INPUT M%,N%,A,B 
4580 A(M%,N%)=A : B(M%,N%)=B 
4590 NEXT I% 
4600 T$="Your matrix has the following non-zero elements" 
4601 PRINT T$ 
4601 IF MENU$="F" THEN LPRINT T$ 
4610 FOR M%=1 TO NS% : FOR N%=1 TO NS% 
4620 IF A(M%,N%)=0 THEN IF B(M%,N%)=0 THEN 4640 
4625 B$="+i*" : B=B(M%,N%) 
4626 IF B<0 THEN B=-B : B$="-i*" 
4630 PRINT "d("M%","N%")=", A(M%,N%),B$;B 
4635 IF NEMU$="F" THEN 4636 ELSE 4640 
4636 LPRINT "d("M%","N%")=", A(M%,N%),B$;B 
4640 NEXT N% : NEXT M% 
4645 PRINT : PRINT : PRINT "Your matrix =" 
4646 IF MENU$="F" THEN 4647 ELSE 4650 
4647 LPRINT : LPRINT : LPRINT "Your matrix =" 
4650 FOR S%=0 TO NS%^2-1 
4660 R%=1-F%(S%) 
4665 CR=0 : CI=0 
4670 FOR M%=1 TO NS% 
4680 N%=N%(S%,M%) 
4690 CR=CR+(A(M%,N%)*R%+B(M%,N%%)*F%(S%))*D%(S%,M%) 
4700 CI=CI+(B(M%,N%)*R%-A(M%,N%%)*F%(S%))*D%(S%,M%) 
4710 NEXT M% 
4720 CR=CR/2 : CI=CI/2 
4730 IF CR=0 THEN IF CI=0 THEN 4780 
4735 B$="+i" : B=CI 
4736 IF CI<0 THEN B=-B : B$="-i*" 
4740 PRINT "("CR,B$;B;")*"B$(S$) 
4745 IF MENU$="F" THEN 4746 ELSE 4780 
4746 LPRINT "("CR,B$;B;")*"B$(S$) 
4780 NEXT S% 
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4781 PRINT : PRINT 
4790 RETURN 
5000 REM- Subroutine 5000-5090 special matrix multiplication 
5010 S%=SA%+SB% 
5020 FOR M%=1 TO NS% 
5030 MB%=N%(SA%,M%) 
5040 N%(S%,M%)=N%(SB%,MB%) 
5050 D%(S%,M%)=D%(SA%,M%)*D%(SB%,MB%)5060 NEXT M% 
5070 F%(S%)=F%(SA%)+F%(SB%) 
5080 IF F%(S%)>1 THEN GOSUB 5100 
5090 RETURN 
5100 F%(S%)=0 
5110 FOR M%=1 TO NS% 
5120 D%(S%,M%)=-D%(S%,M%) 
5122 NEXT M% 
5130 RETURN 
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APPENDIX E:  DEMONSTRATION  
OF THE ROTATION RULES 

 
 We demonstrate here the validity of the PO pulse rotations 
derived from the vector representation in Section II.6 (correspondence 
between the vector rotations and the PO formalism). 
 
Demonstration of an αx rotation 
 
 We will demonstrate an α rotation around the x-axis: 
 
                                   cos sinx

y y zI I Iα α α⎯⎯→ +  (E1) 
Other rotations can be demonstrated in a similar way.  We start from 
the rotation operator applied to a density matrix and we make use of 
the commutation rules for the operators Ix, Iy, Iz, which are: 
 

                                           x y y x zI I I I iI− =  

                                           y z z y xI I I I iI− =  (E2) 

                                           z x x z yI I I I iI− =  
 

 It is necessary to emphasize that the above rules apply not only 
to an isolated spin but also to every particular nucleus in a multi-
nuclear system (with or without coupling).  In an AMX system for 
instance we have for nucleus A: 
 

                                      xA yA yA xA zAI I I I iI− =        (and so on) 
 

 Angular momentum components of different nuclei within a 
system are commutative.  For instance: 

                                      
0

0
xA yM yM xA

xA xM xM xA

I I I I

I I I I

− =

− =
 (E3) 

 

The rotation operator Rαx [see(B45)] has the expression: 
 

                                         exp( )x xR i Iα α=  (E4) 
 

Applied to a density matrix D(n) it will yield: 
                                   1( 1) ( )xD n R D n R xα α

−+ =  (E5) 
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 In (E1) we have assumed that D(n)  is equal to Iy, so what we 
have to demonstrate is: 
 

                      1( 1) cos sinx y x y xD n R I R I Iα α α α−+ = = +  (E6) 
 

In Appendix B we have demonstrated [see (B51)] that 

                         cos [ ] sin (2 )
2 2x xR iα Iα α

= ⋅ + ⋅1  (E7) 
 

Introducing this expression in (E6) gives 

( 1) cos [ ] sin (2 ) cos [ ] sin (2 )
2 2 2 2x y xD n i I I i Iα α α α⎡ ⎤ ⎡+ = ⋅ − ⋅ ⋅ + ⋅⎢ ⎥ ⎢⎣ ⎦ ⎣

1 1 ⎤
⎥⎦

               
2 2cos 4sin 2 cos 4sin ( )

2 2 2 2y x y x y x x yI I I I i I I I Iα α α α
= ⋅ + ⋅ + −  

 

After using the first relation in (E2) this becomes 
2 2( 1) cos 4sin 2 cos 4sin ( )

2 2 2 2y x y xD n I I I I i iI z
α α α α

+ = ⋅ + ⋅ + −  

                 2 2cos 4sin sin
2 2y x y x zI I I I Iα α α= ⋅ + ⋅ + ⋅  

 

If we use now the relation 

                                             
1
4x y x yI I I I= −

 (E8) 
which will be demonstrated immediately, we get 
 
                              ( 1) cos siny zD n I Iα α+ = ⋅ + ⋅  
which confirms (E1). 
 To demonstrate (E8) we postmultiply the first relation in (E2) 
by xI  and, taking (B48) into account, we obtain 

                                       
1
4x y x y z xI I I I iI I− =

 (E9) 
 

Premultiplying of the first relation in (E1) by Ix yields 
 

                                           
1
4 y x y x x zI I I I iI I− =  (E10) 
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Subtracting (E10) from (E9) gives 

                       
12 ( ) (
2x y x y z x x z y y)I I I I i I I I I i iI I− = − = = −  

or 

                                       

12
2x y x yI I I I= −

 
which demonstrates (E8). 
 
Rotation operators applied to product operators 
 
 Suppose we have to apply the rotation operator the RαxA to the 
product operator [yzy].  The latter is a shorthand notation for the 
product. 
 

                                   (2 )(2 )(2 )yA zM yXI I I  
 

The subscripts A, M, X refer to the different nuclei in the system. 
Since these subscripts are omitted for simplicity in the product 
operator label [yzy], we have to keep in mind as a convention that the 
different nuclei of the system appear in the product operators always 
in the same order: A, M, X. 
 What we have to calculate is: 
                 ( 1) exp( ) 8 exp( )xA yA zM yX xAD n i I I I I i Iα α+ = − ⋅  (E11) 
 

We have stated (E3) that IxA commutes with both IzM and IyX.  This 
enables us to rewrite (E11) as: 
 

                 ( 1) exp( ) exp( )8xA yA xA zM yXD n i I I i I I Iα α+ = − ⋅  
 

and we have reduced the problem to a known one.  Using (E6) we get:  
 

                   ( 1) 8(cos sin )yA zA zM yXD n I I I Iα α+ = ⋅ + ⋅  
 

In shorthand notation: 
 

                        [ ] [ ]cos [ }sinxAyzy yzy zzyα α α⎯⎯⎯→ +  (E12) 
 

 This can be phrased as follows:  A rotation operator affects only 
one factor in the product operator and leaves the others unchanged.  
The affected factor parallels the vector rotation rules. 
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 This is true in the case of a selective pulse.  We have sometimes 
to handle nonselective pulses, affecting two or more nuclei in the 
system.  In such cases, the procedure to follow is to substitute (in the 
calculations, not in the hardware) the nonselective pulse by a sequence 
of selective pulses following immediately one after another. 
 
The problem 
                                                                     [ ]  xMXyzy α⎯⎯⎯→
has to be handled as  
 

                                                                     [ ] [ ]cos [ ]sinxMyzy yzy yyyα α α⎯⎯⎯→ −  
                                       2[ ]cos [ ]cos sinxX yzy yzzα α α α⎯⎯⎯→ +  

                                                               
2[ ]sin cos [ ]sinyyy yyzα α− − α

]

 (E13) 
 
The reader can easily check that the order in which αxM and αxX are 
applied is immaterial.  The procedure described above has to be 
followed even if the spins affected by the pulse are magnetically 
equivalent. 
 The result (E13) may seem unexpectedly complicated for one 
single pulse.  Fortunately, in most practical cases α is either 90o or 
180o.  In these cases, the procedure above leads to exhilariatingly 
simple results like: 
                                       90[ ] [ ]xMXyzy yyz⎯⎯⎯→−
                                       180[ ] [ ]xMXyzy yzy⎯⎯⎯⎯→
                                      90[ ] [xAMxyz xzz⎯⎯⎯→  
 
In these cases it is not necessary to split the non-selective pulse into 
subsequent selective pulses.  
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APPENDIX F:  DEMONSTRATION OF THE  
COUPLED EVOLUTION RULES 

 
 Before going into the demonstration we need to point out two 
limitations: 
 

      a. It assumes I=1/2 for all nuclei in the system 
      b. It operates in the weak coupling case: 
          J (coupling constant)<< ∆δ  (chemical shift difference) 
 

 Between r.f. pulses the evolution of a two-spin system AX in 
the rotating frame is governed by the Hamiltonian. 
                          ( )2A zA X zX zA zXI I JI Iπ= Ω +Ω +H  (F1) 
The density matrix D(n+1) at the end of the evolution is related to the 
initial matrix D(n) as:  
 

                    (F2) ( 1) exp( / ) ( ) exp( / )D n i t D n i t+ = − ⋅ ⋅H H
 

Since all terms in (F1) commute with each other, we can write the 
evolution operator as: 

 

( ) ( ) ( ) ( )exp / exp exp exp 2A zA X zX zA zXi t i tI i tI i JtI Iπ= Ω ΩH  

                            A X JR R R=  
 

where the order of the factors is immaterial.  Relation (F2) can be 
rewritten as: 
                          1 1 1( 1) ( )J X A A X JD n R R R D n R R R− − −+ = ⋅ ⋅  (F3) 
 

In (F3) the actual coupled evolution is formally presented as the result 
of three independent evolutions due to shift A, shift X, and coupling J, 
respectively.  In fact this is the way the coupled evolutions are 
handled in the PO formalism:  as a succession of shift evolutions and 
evolutions due to spin-spin coupling (coupling evolutions). 
 The  shift evolutions (noncoupled evolutions) are actually z- 
rotations and are easily handled with the vector rotation rules. 
Example: 
       [ ] [ ]cos [ ]sinA t

A Axy xy t yyΩ⎯⎯⎯→ Ω + tΩ

X

 

[ ]cos cos [ ]cos sinX t
A X Axy t t xx tΩ⎯⎯⎯→ Ω Ω − Ω Ω t

X

 
                          [ ]sin cos [ ]sin sinA X Ayy t t yx t t+ Ω Ω − Ω Ω
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Or, with self-explanatory notations, 
 

      [ ] '[ ] '[ ] '[ ] '[ ]A Xt txy cc xy cs xx sc yyΩ Ω⎯⎯⎯→⎯⎯⎯→ − + − ss yx  (F4) 
 

The object of this appendix is to derive the rules for calculating 
 

1( 1) ( )J JD n R D n R−+ =  
where 
                                        ( )exp 2J zA zXR i JtI Iπ=  (F5) 
 

and  D(n)  may be any of the product operators or a combination 
thereof. 
 We have to find first an expression similar to (B51) for the 
operator RJ.  Calculating the powers of  IzAIzX  we find 

                             ( ) 1 [ ]
4

n
zA zX nI I = 1               for n = even (F6) 

                             ( ) 1 4
4

n
zA zX zA zXnI I I= I         for n = odd (F7) 

 

and this leads to 

                             (cos [ ] sin 4
2 2

)J zA zX
Jt JtR i I Iπ π

= + ⋅1  (F8) 

an expression we can use in calculating  1( 1) ( )J JD n R D n R−+ = . 
 It is now the moment to introduce specific product operators for 
D(n).  We have to discuss three cases. 
 
 Case 1.  Both nuclei A and X participate in the product operator 
with z or 1.  Example: 
                                   ( )( )( ) [ ] 2 2zA zXD n zz I I= =  
 

In this case D(n) commutes with both IzA and IzX and this gives: 
 

                      1 1( 1) ( ) ( ) (J J J JD n R D n R D n R R D n− −+ = = = )
 

 None of the POs [zz], [z1], [1z], [11] is affected by the coupling 
evolution.  As a matter of fact, all these POs have only diagonal 
elements and are not affected by any evolution, shift or coupling. 
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 Case 2. Both nuclei A and X participate in the product operator 
with an x or a y.  Example: 
                                  ( )( )( ) [ ] 2 2xA yXD n xy I I= =  

We can demonstrate that this kind of product operator also is not 
affected by the coupling evolution.  In order to do so we have to take 
into account that, for I = 1/2, the components of the angular momen-
tum ar anticommutative: 
                                               x y y xI I I I= −  

                                               y z z yI I I I= −  (F9) 

                                               z x x zI I I I= −  
 
The validity of (F9) can be verified on the expressions (C1, C2) of the 
angular momentum components for I=1/2.  Using (F8) to calculate 

 we have ( 1D n + )

( )( 1) cos [ ] sin 4 (4
2 2 zA zX xA yX
Jt JtD n i I I I Iπ π⎡ ⎤+ = − ⋅ ×⎢ ⎥⎣ ⎦

1 )  

( )cos [ ] sin 4
2 2 zA zX
J Ji I Iπ π⎡ ⎤× + ⋅⎢ ⎥⎣ ⎦

1  

( ) ( )2 2 3cos 4 sin 4
2 2xA yX zA zX xA yX zA zX
Jt JtI I I I I I I Iπ π

= +  

( )( )2cos sin 4
2 2 xA yX zA zX zA zX xA yX
Jt Jti I I I I I I I Iπ π

+ −  

Since the angular momentum components of A are commutative with 
those of X [see(E3)], we can rewrite the last result as 

( ) ( )2 2 3( 1) cos 4 sin 4
2 2xA yX zA xA zA zX yX zX
Jt JtD n I I I I I I I Iπ π

+ = +  

                   ( )( )2cos sin 4
2 2 xA zA yX zX zA xA zX yX
Jt Jti I I I I I I I Iπ π

+ − (F10) 
 

Using (F9) we find out that the last parenthesis in (F10) is null.  To 
calculate the product  IzAIxAIzAIzXIyXIzX  in (F10) we use the following 
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 relations, similar to (E8) : 
 

             ( ) / 4 ; ( ) / 4zA xA zA xA zX yX zX yXI I I I I I I I= − = −
 

and we reduce (F10) to 
 

( ) ( ) ( )2 2( 1) cos 4 sin 4 4 (
2 2xA yX xA yX xA yX
Jt JtD n I I I I I I D n)π π

+ = + = =
 

All POs in the subset [xx],[yx],[xy],[yy] are  not affected by the J evo-
lution.  Unlike the POs in Case 1, they are affected by the shift evo-
lution (see F4).  This is consistent with the fact that all the non-
vanishing elements of these POs are double-quantum or zero-quantum 
coherences.  The transition frequencies corresponding to these matrix 
elements do not contain the coupling J. 
 
 Case 3. The product operator exhibits z or 1 for one of the 
nuclei and x or y for the other nucleus.  Only this kind of product 
operator is affected by the coupling.  Example: 
 

                              ( ) [ 1] 2 xAD n x I= =  
 

Calculations similar to those performed in Case 2 lead to: 

( ) (( 1) cos [ ] sin 4 2
2 2 zA zX xA
Jt JtD n i I I Iπ π⎡ ⎤+ = − ⋅ ×⎢ ⎥⎣ ⎦

1 )  

 

( )cos [ ] sin 4
2 2 zA zX
Jt Jti I Iπ π⎡ ⎤× + ⋅⎢ ⎥⎣ ⎦

1  

 

( ) ( )2 2cos 2 sin 32
2 2xA zA zX xA zA zX
Jt JtI I I I I Iπ π

= +  

 

( )cos sin 8 8
2 2 xA zA zX zA zX xA
Jt Jti I I I I I Iπ π

+ −  

 

( ) ( )2 2cos 2 sin 32
2 2xA zA xA zA zX
Jt Jt 2I I I I Iπ π

= +  

( )cos sin 8 8
2 2 xA zA zX zA xA zX
Jt Jti I I I I I Iπ π

+ −  
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( ) ( )2 2cos 2 sin 2
2 2xA xA
Jt JtI Iπ π

= −  

( )cos sin 8
2 2 xA zA zA xA zX
Jt Jti I I I I ( )Iπ π

+ −  

( ) ( )2 2cos 2 sin 2
2 2xA xA
Jt JtI Iπ π

= −  

( )( )cos sin 8
2 2 yA zX
Jt Jti iI Iπ π

+ −  

cos (2 ) sin (4 )xA yA zXJt I Jt I Iπ π= +  

cos [ 1] sin [ ]Jt x Jt yzπ π= +  
 

We have demonstrated that 
 

[ 1] [ 1]cos [ ]sinJ couplx x Jt yz Jtπ π⎯⎯⎯→ +  
 

 After doing similar calculations for all the POs in this category 
(i.e., [x1],[1x],[y1],[1y],[xz],[zx],[yz],[zy]), we can summarize the 
following rules for the evolution due to the coupling J : AX

 a. The coupling evolution operator RJ affects only those product 
operators in which one of the nuclei A,X is represented by x or y while 
the other is represented by 1 or z. 
 b. The effect of the J evolution is a rotation of x (or y) in the 
equatorial plane by πJt, while z is replaced by 1 and 1 by z in the new 
term.  The format is:  
 PO after J evolution = cosπJt (former PO) + sinπJt (former PO 
in which x is replaced by y,  y by -x,  z by 1 and 1 by z).  In systems 
with more than two nuclei, every nonvanishing coupling like JAM, JAX, 
JMX, etc.,  has to be taken into account separately (the order is 
immaterial). 
 Note 1.  From Appendices E and F it results that any rotation  
(r.f. pulse) or coupled evolution turns a given PO into a linear 
combination of POs within the basis set.  In other words, if the density 
matrix can be expressed in terms of POs at the start of a sequence we 
will be able to express it as a combination of POs at any point of the 
sequence.  This confirms that the PO basis set is a complete set. 
 Note 2.  Moreover, in a coupled evolution, any x or y in the  
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product operator can only become an x or y.  Any z or 1 can only 
become a z or 1. This  leads to a  natural  separation of  the  basis set 
(N2 product operators) into N subsets of N operators each.  
 In the case of N = 4 (two nuclei) the four subsets are: 
 
                                    1)  [11], [1z], [z1], [zz] 
 
                                    2)  [x1], [y1], [xz], [yz] 
 
                                    3)  [1x], [zx], [1y], [zy] 
 
                                    4)  [xx], [yx], [xy], [yy]  
 
 In the case of N = 8 (three nuclei) the eight subsets are: 
 
              1)  [111], [z11], [1z1], [zz1], [11z], [z1z], [1zz], [zzz] 
 
              2)  [x11], [y11], [xz1], [yz1], [x1z], [y1z], [xzz], [yzz] 
 
              3)  [1x1], [zx1], [1y1], [zy1], [1xz], [zxz], [1yz], [zyz] 
 
              4)  [xx1], [yx1], [xy1], [yy1], [xxz], [yxz], [xyz], [yyz] 
 
              5)  [11x], [z1x], [1zx], [zzx], [11y], [z1y], [1zy], [zzy] 
 
              6)  [x1x], [y1x], [xzx], [yzx], [x1y], [y1y], [xzy], [yzy] 
 
              7)  [1xx], [zxx], [1yx], [zyx], [1xy], [zxy], [1yy], [zyy] 
 
              8)  [xxx], [yxx], [xyx], [yyx], [xxy], [yxy], [xyy], [yyy]  
 
 Under a coupled evolution, the descendents of a PO are to be 
found only within its own subset. 
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APPENDIX G:  PO EVOLUTION TABLES 
 
 The tables below summarize the effect of a coupled evolution 
on each of the sixteen POs of an AX system (two spin 1/2 nuclei).  The 
first column in each table indicates the PO before the evolution, while 
the next columns indicate the newly created POs (including the initial 
one).  A coupled evolution implies three PO operations: shift A, shift 
X, coupling J. Nevertheles no more than four terms are generated 
from the initial one: when both shifts are active the coupling is not. 
 

 a.  First subset (not affected by evolution) 
 

 

Initial PO 
 

 

F  i  n  a  l     POs 

[11] [11] 
 

0 0 0 

[ ]z1  
 

0 [ ]z1  0 0 

[ ]1z  
 

0 0 [ ]1z  0 

[ ]zz  
 

0 0 0 [ ]zz  

 
 

 b. Second subset (affected by A shift and J coupling) 
 

 

Initial PO 
 

 

F  i  n  a  l     POs 

[ ]x1  
 

cC x[ ]1  sC y[ ]1  -sS xz[ ]  cS yz[ ]

[ ]y1  
 

-sC x[ ]1 cC y[ ]1  -cS xz[ ] -sS yz[ ] 

[ ]xz  
 

-sS x[ ]1  cS y[ ]1  cC xz[ ] sC yz[ ]

[ ]yz  
 

-cS x[ ]1 -sS y[ ]1  -sC xz[ ] cC yz[ ]  
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 c. Third subset (affected by X shift and J coupling) 
 

 

Initial PO 
 

 

F  i  n  a  l     POs 

[ ]1x  
 

c C x' [ ]1  -s S zx' [ ] s C y' [ ]1  c S zy' [ ]  

[ ]zx  
 

-s S x' [ ]1 c C zx' [ ] c S y' [ ]1  s C zy' [ ] 

[ ]1y  
 

-s C x' [ ]1 -c S zx' [ ] c C y' [ ]1  -s S zy' [ ]

[ ]zy  
 

-c S x' [ ]1 -s C zx' [ ] -s S y' [ ]1 c C zy' [ ]

 
 
 d. Fourth subset (affected by A shift and X shift) 
 

 

Initial PO 
 

 

F  i  n  a  l     POs 

[ ]xx  
 

cc xx'[ ] sc yx'[ ] cs xy'[ ] ss yy'[ ] 

[ ]yx  
 

-sc xx'[ ] cc yx'[ ] -ss xy'[ ] cs yy'[ ] 

[ ]xy  
 

-cs xx'[ ] -ss yx'[ ] cc xy'[ ] sc yy'[ ] 

[ ]yy  
 

ss xx'[ ] -cs yx'[ ] -sc xy'[ ] cc yy'[ ] 

 

          
cos ; ' cos ; cos
sin ; ' sin ; sin

A X

A X

c t c t C
s t s t S

Jt
Jt

π
π

= Ω = Ω =
= Ω = Ω =
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APPENDIX H:  DEMONSTRATION  
OF THE REFOCUSING RULES 

 
 We demonstrate here the validity of the rules stated in Section 
II.8 to handle a refocusing routine:  
 
 

D/2     D/2  

180

 
 
 
 When handling this segment of a sequence in the conventional 
way we have to subject the density matrix D(n) to a string of operators 
representing the  ∆/2  evolution (shifts and couplings), the r.f. pulse 
(R180), then again the ∆/2 evolution.  For two nuclei the string would 
be: 
 
                                 180A X AX AX X AR R R R R R R R=  (H1)  
 
where RA, RX are shift operators and RAX is the coupling operator. 
 All shift and coupling evolution operators commute with each 
other.  In order to simplify the expression (H1) we have to find out 
how they commute with R180.  Let us concentrate on one nucleus (e.g., 
nucleus A) and see how RA commutes with R180xA.  According to 
relation (B51) 

         180 exp( ) cos [ ] sin (2 ) 2
2 2xA xA xA xAR i I i I iIπ ππ= = + =1  (H2) 

 
A similar expression can be written for the shift evolution operator RA 
which represents a rotation by α = ΩA∆ /2  around the z axis. 

             exp( ) cos [ ] sin (2 )
2 2A A zA zAR R i I iα Iα αα= = = +1  (H3) 



 
 
 
 
 
 
 
172     Appendix H 

We want to examine the product of the two operators: 

180 2 cos [ ] sin (2
2 2xA A xA zAR R iI i Iα
α α )⎡ ⎤= +⎢ ⎥⎣ ⎦

1  

 

Using the anticommutativity of  Ix and Iz  for  I=1/2  stated in (F10) we 
can rewrite the product as 

180 ( ) 180cos [ ] sin (2 ) 2
2 2xA A zA xA A xAR R i I iI R Rα α
α α

−
⎡ ⎤= − =⎢ ⎥⎣ ⎦

1  

 

We notice that R(-a)A is the reciprocal of RaA since their combined 
action would leave the density matrix unaffected.  We can therefore 
write  
 

                                  (H4) 1
180 180xA A A xAR R R Rα α

−=
 

and this is the commutation rule we needed. 
 One can check that the rule is the same if instead of  R180xA  we 
use  R180yA  or R180FA (180o rotation about an arbitrary axis in the xy 
plane).  For the last case one has use  
 

2
180 ( ) 180 180 180 (2 )A zA xA zA A zA xAR R R R R R R RΦ −Φ Φ Φ Φ Φ= = = zA

Φ

 

( )2 cos [ ] sin 2 cos 2 sin ( 2 )xA zA xA yAiI i I iI i iI= Φ ⋅ + Φ ⋅ = Φ ⋅ + Φ ⋅ −1  

180 180cos sinxA yAR R= Φ +  
 
We have used here  / 2xA zA yAI I iI= −   which is a consequence of (E2) 
and (F9). 
 Therefore we can write in general 
 

                                    (H5) 1
180 180A A A xAR R R R−=

 

On the other hand we have 
 

                                   180 180A X X xAR R R R=  (H6) 
 

since operators acting on different nuclei always commute. 
 
A similar pattern can be followed to demonstrate 
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                                  (H7) 1
180 180A AX AX AR R R R−=

                                  (H8) 1
180 180X AX AX XR R R R−=

 
With these commutation rules we now can rearrange a string like the 
one in (H1): 
 
        1 1

180 180A X AX A AX X A A X AX AX X A AR R R R R R R R R R R R R R R− −= =  

                            2 2
180 180X A A XR R R R= =  

 
Only the shift X is expressed in the final result, while shift A and 
coupling AX are refocused.  Since RX is the shift evolution for ∆/2,  

2
XR  

is the operator for the full delay ∆. 
 If the 180o pulse is applied on both nuclei A and X, the 
rearranging yields: 
 

1 1
180 180 180 180A X AX A X AX X A A X AX A AX X A XR R R R R R R R R R R R R R R R R− −= =  

1 1 2 2
180 180 180 180 180 180A X AX AX X A A X AX A X A X AXR R R R R R R R R R R R R R− −= = =  

 
Both shifts are refocused, the coupling only is expressed in the final 
result.  This confirms the refocusing rules stated in Section II.8.  There 
is no difficulty in extending them to more than two nuclei. 
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APPENDIX I:  SUPPLEMENTARY DISCUSSIONS 
 
2DHETCOR without ∆1 
 
 It is stated in Part I, Section 3.7, that in order to understand the 
role of the delay ∆1 (see Figure I.2) we should carry on the 
calculations without it.  We do this here. 
 We start by writing the density matrix before the combined 
90xCH pulse: 
 

3 0 0
0 2 0

(5)                               (I1)
* 0 3 0

0 * 0 2

F
G

D
F

G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
If we have the delay ∆1 = 1/2J, the expressions for F and G are taken 
from (I.32): 

                                  13 1

24

(5) 2exp[ ( )]
(5)

H eF d i t
G d F
= = − − Ω +∆
= = −

 (I2) 

 

If ∆1 is not used, the expressions for F and G, taken from (I.25) and 
(I.26), are: 
                             (I3) 13 (4) 2 exp( )H eF d i i t G= = − − Ω =
 

 
 We apply the operator R90xCH given in (I.34) to D(5) in (I1). 
 
 

90

3 3 3 3
2 2 2 21(5)

3 * 3 * 3 * 3 *2
2 * 2 * 2 * 2 *

xCH

iF i F i F iF
i G iG iG i G

D R
i F iF iF i F

iG i G i G iG

+ − + − +⎡ ⎤
⎢ ⎥− + − + +⎢ ⎥=
⎢ ⎥+ − + + −
⎢ ⎥− + + − +⎣ ⎦
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Premultiplication with 1
90 xCHR−  gives the following expression for D(7) 

 
 

10 ( 2 (
* *) * * * * * *)

2 10 ( (
* * * *) * *) * *

1
4

( 10 ( 2
* * * *) * *) * *

( 2 1
* *) * * * * * *)

i F G i F G F G i F G
F G F G F G F G

i F G i F G i F G F G
F G F G F G F G

F G i F G i F G i F G
F G F G F G F G

i F G F G i F G i F G
F G F G F G F G

+ + − + + −⎡
− − + − + + + −

− + − + + − − +
− + − − + − + +

+ − − + +
+ + + − − − − +

− − + − − + − +
+ − + + + − − −⎣

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎦

0 (

−

  
  (I4) 
 
 Now we can see why having G = F is counterproductive. The 
factors F and G contain the proton information [see (I3)] and, when 
they are equal, this information disappears from the observable single-
quantum coherences d12 and d 34.  In this case D(7) becomes 
 
 

5 * 2 * 0
2 5 * 0 *1(7)

* 0 5 * 22
0 * 2 5

iF iF i F F
i iF iF F F

D
F F iF iF i

F F i iF iF

+ − +⎡ ⎤
⎢ ⎥− + − +⎢ ⎥=
⎢ ⎥+ − −
⎢ ⎥+ − − −⎣ ⎦*

 
  (I5) 
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 No pulse follows after t(7) and each matrix element evolves in 
its own "slot."  The matrix elements d12 and d34. will be affected by the 
carbon evolution during the detection td (preceded or not by the 
coupled evolution ∆2) but they will not be proton modulated.  We will 
not have a 2D. 
 The DM calculations in Sections 3.6 to 3.9 have been carried on 
with the delay ∆1 = 1/2J, i.e, with G = − F [see (I2)].  In this case D(7) 
is 
 
 
 

5 * 0 (
* 5 ( *) 01(7)

0 ( *) 52
( *) * * 5

i F F i F F
i F F i F F

D
i F F i F F

i F F F F i F F

− + +⎡ ⎤
⎢ ⎥− + − − +⎢ ⎥=
⎢ ⎥+ +
⎢ ⎥− + + − − +⎣ ⎦

*)

*−

 
 
  (I6) 
 
 
Taking F from (I2) and using the notations (I.31) 
 

1

1

cos[ ( )]
sin[ ( )]

H e

H e

c t
s t
= Ω + ∆
= Ω + ∆

 

 
we obtain 
 

 
2( )
* 4
* 4

F c i
F F is
F F c

s= − −
− =
+ = −

 (I7) 

 
 
By introducing (I7) into (I6) we can verify the expression of D(7) 
given in (I.35).  The carbon observables d12 and d34 contain now the 
factor s which carries the proton information. The role of the 
subsequent coupled evolution D2 is explained in Section 3.9. 
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2DHETCOR without the 180xC pulse 
 
 We demonstrate here the result (I.51).  The density matrix at 
t(1), taken from (I.12), is 
 
 

2 0 2 0
0 3 0 2

(1)                              (I8)
2 0 2 0
0 2 0 3

i
i

D
i

i

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 
Since the 180xC pulse and the delay ∆1 are suppressed, all we have 
between t(1) and t(5) is an evolution te.  The density matrix just before 
the 90xCH pulse is then  
 

 
2 0 0
0 3 0

(5)                              (I9)
* 0 2 0

0 * 0 3

B
C

D
B

C

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
with 
 

                                        13

24

2 exp( )
2 exp( )

e

e

B i i t
C i i t
= − − Ω
= − − Ω

 (I10) 

 
 
We apply the 180xCH operator to (I9). 
 

90

2 2 2 2
3 3 3 31(5)

2 * 2 * 2 * 2 *2
3 * 3 * 3 * 3 *

xCH

iB i B i B iB
i C iC iC i C

D R
i B iB iB i B

iC i C i C iC

+ − + − +⎡ ⎤
⎢ ⎥− + − + +⎢ ⎥=
⎢ ⎥+ − + + −
⎢ ⎥− + + − +⎣ ⎦
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Premultiplication with 1
90 xCHR−  gives the following expression for D(7) 

 

10 ( 2 (
* *) * * * * * *)

2 10 ( (
* * * *) * *) * *

1
4

( 10 ( 2
* * * *) * *) * *

( 2 1
* *) * * * * * *)

i B C i B C B C i B C
B C B C B C B C

i B C i B C i B C B C
B C F C B C B C

B C i B C i B C i B C
B C B C B C B C

i B C B C i B C i B C
B C B C B C B C

+ + − + + −

− − + − + + + −

− + − + + − − +

− + − − + − + +

+ − − + + −

+ + + − − − − +

− − + − − + − +

+ − + + + − − −

⎡

⎣

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎦

0 (

  (I11) 

 We follow now the evolution of the carbon single-quantum 
coherences. 

 
12

1
(7) ( 2 * *)

4
d i B C B= − − + + −C

 

 
34

1
(7) ( 2 * *)

4
d i B C B= − + − − +C

i
 

 
12 34(7) (7)d d+ = −  (I12) 

 
The terms B and C, which contain the proton information, are absent 
from the sum.  If we start the acquisition at t(7), with the decoupler 
on, we will not have a 2D.  This is why ∆2 still is necessary. 
 Proceeding as in (I.36) to (I.43) we have: 

12 12 2 2

12 2

34 34 2

(8) (7)exp( )exp( )
(7)exp( ) (I13)

(8) (7)exp( )

C

C

C

d d i i J
id i

d id i

π= − Ω ∆ − ∆

= − − Ω ∆
= + − Ω ∆  
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Treating the detection as in (I.44) to (I.47) we obtain 
 

  (I14) 12 12 2

34 12 2

(9) (7)exp( )exp( )
(9) (7)exp( )exp( )

C

C C

d id i i t
d id i i t

= − − Ω ∆ − Ω
= + − Ω ∆ − Ω

C d

d

 ( ) ( )* *
12 34(9) 9 9TC oCM M d d⎡ ⎤= +⎣ ⎦  

 ( ) ( )* *
12 34 27 7 exp( )exp( )oC C C diM d d i i t⎡ ⎤= − − Ω ∆ Ω⎣ ⎦  

 [ ]2( / 2)( * *)exp (oC C di M B B C C i t= − − − + Ω + ∆ )  (I15) 
 

From (I10) we have 
( ) ( )13 13 13 13* 2 cos sin 2 cos sine e e eB B i t i t i t i t− = − Ω − Ω − Ω + Ω  

              (I16) 134 cos ei= − Ω t

24* 4 cos eC C i t− = − Ω  (I17) 

[ ]13 24 2(9) ( / 2)( 4 cos 4 cos )exp ( )TC oC e e C dM i M i t i t i t= − − Ω + Ω Ω +∆

             [ ]13 24 22 (cos cos )exp ( )oC e e C dM t t i t= − Ω − Ω Ω +∆  
 

which confirms (I.51). 
 
Fully coupled 2DHETCOR 
 
 If the proton decoupler is not turned on during the detection, the 
matrix elements d12 and d34 ,will evolve with different frequencies in 
the domain td.  Each of them is proton modulated, even if their sum at 
time t(7) is not, and this renders the delay ∆2 unnecessary.  The 
detection starts at t(7) and we will have 
 

( ) ( )* *
12 12 34 34(9) 7 exp( ) 7 exp( )TC oC d dM M d i t d i t⎡ ⎤= − Ω + Ω⎣ ⎦  

 
By introducing (I12), (I16), and (I17) in the expression above we 
obtain 

( )
( )

13 24 12

13 24 34

(9) 1 2 cos cos exp( )

1 2 cos cos exp( )
TC oC e e d

oC e e d

M iM t t i t

iM t t i t

= − − Ω + Ω Ω

− + Ω − Ω Ω
 

 
which confirms (I.52). 
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APPENDIX J:  PRODUCT OPERATORS AND 

MAGNETIZATION COMPONENTS 
 
Finding the magnetization components 
 
 Suppose that at a given moment t(n) of the sequence we have 
the density matrix D(n) expressed in terms of product operators.  The 
x magnetization components for nuclei A, M, X (we take a three-spin 
system as an example) are given by: 
 
 ( )( ) ( / ' ) coefficient of [ 11] in ( )xA oA AM n M p x D n= −  

 ( )( ) ( / ' )            "         [1 1]  "  ( )xM oM MM n M p x D n= −  (J1) 

 ( )( ) ( / ' )            "         [11 ]  "  ( )xX oX XM n M p x D n= −  
 
with similar expressions for My and Mz. 
 MoA, MoM, MoX are the equilibrium magnetizations for the 
respective nuclei.  The factor p' is related to the Boltzmann factor and 
has the expression  
 
 ' / 2 / 2A A Ap p N NkT= = Ω  (J2) 
 
with similar expressions for ' , 'M Xp p   (for two nuclei we adopt p, q 
instead of pA, pX ).  N = total number of quantum states in the system 
(degenerate or not).  For m nuclei with I = 1/2 we have N = 2m. 
 The quantity 1/N represents the average population per state as 
the total population is normalized to l.  The above procedure is 
justified by the relation (B17), keeping in mind the orthogonality of 
product operators (relation D1). 
 
Fast and slow magnetization components 
 
 In the first part of this book, when deriving the magnetization 
components from the density matrix elements, we found it instructive 
to calculate separately the fast and slow components of the transverse 
magnetization (see Section I.3.9).  This can be achieved in the PO for-
malism as well. 
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 For an AX system (two spin 1/2 nuclei), one can split the MxA 
magnetization into Mx12 (fast) and Mx34 (slow) as follows: 
 

                ( )12 coeff. of [ 1]+coeff. of [ ]
2 '

oA
x

MM x x
p

= − z  

 

                ( )34 coeff. of [ 1] coeff. of [ ]
2 '

oA
x

MM x x
p

= − − z  

 

with similar relations for My.  
 For nucleus X the fast and slow components are: 
 

                ( )13 coeff. of [1 ]+coeff. of [ ]
2 '

oA
x

MM x z
p

= − x  

 

                ( )24 coeff. of [1 ] coeff. of [ ]
2 '

oA
x

MM x z
p

= − − x

)

 

 

Using Table II.1, one can check that  
([1 ] [ ] 2x zx+    and   ( )[1 ] [ ] 2x zx−   

represent the matrix elements d13 and d24, respectively. 
 
Writing the initial density matrix 
 
 We assume usually that, before the pulse sequence starts, all 
spins are at thermal equilibrium with the lattice. 
 With the sign convention adopted in this book (vide infra) the 
density matrix D(0) will be: 
 

  (J3) (0) ' [ 11] ' [1 1] ' [11 ]A M XD p z p z p= − − − z

0=

z

 

This is consistent with 
  o ; 0 ;zA A xA yAM M M M= =
 

and is the same for spins M and X.  
 If we work in a steady state in which one of the nuclei (let's say 
nucleus A) does not have enough time to recover from the previous 
cycle, we can start with  
 

 (0) ' [ 11] ' [1 1] ' [11 ]A M XD p z p z pλ= − − −  (J4)  
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where 1λ ≤ .  If MzA has been brought to zero by the last pulse of the 
sequence and the start of the next sequence comes after a delay d, then  
                                 ( )11 exp / Ad Tλ = − −  
 

Generally we start a sequence with no transverse magnetization; this 
implies that d is long enough with respect to T2 for all nuclei. 
 
Sign convention 
 
 Throughout this book the conventional positive sense (right 
hand rule) has been adopted for all rotations (due to pulses or 
evolutions).  For instance a rotation about Oz brings the magnetiza-
tion from x to y, to x, to − − y.  A rotation about Ox goes: 

y  to  z  to − y  to − z 
This is the actual sense of precession when the magnetogyric ratio, g, 
is negative.  It has been assumed that the main magnetic field Bo is 
directed upwards (along +Oz) and thus at equilibrium the 
magnetization is directed up and the angular momentum is directed 
downwards (along Oz) which is also consistent with a negative g. −
 This way, the most populated state is the one with the angular 
momentum negative.  Most features of the NMR sequences (one- and 
two-dimensional) do not depend on the sign of g for all practical 
purposes.  Commercial NMR spectrometers do not provide specific 
means to distinguish the sign of g.  Therefore the above rules can be 
applied for all nuclei in the system, no matter what the sign of their 
magnetogyric ratio. 
 If for special purposes the sign of g has to be taken into account, 
then for positive g  we have to use left hand rotation rules and start at 
thermal equilibrium with Iz directed upwards.  



 
 
 
 
 
 
 

When to Drop Non-Observable Terms     183 

APPENDIX K:  WHEN TO DROP  
NONOBSERVABLE TERMS (NOT) 

 
 In the expression of the density matrix we are interested in 
those POs which represent observable magnetization components: Mx 
and My for the nucleus (or nuclei) which are observed (see Appendix 
J).  We have to carry all the nonobservable terms through the calcula-
tions as long as there is a possibility for them to generate observable 
terms (following a pulse or an evolution). 
 It is useful to be aware when it is safe to drop the non-
observable terms, or just include them in the nondescript designation 
NOT. 
 Rule #1.  In the final expression D(n) of the density matrix we 
have to write down explicitly the observable terms only for the spe-
cific nucleus which is observed.  This includes the POs which show x 
or y for the observed nucleus and 1 for all others. 
 Rule #2.  A decoupled evolution does not generate observable 
POs out of NOT or the reverse: it merely replaces x by y or y by x. 
So, if the last event of the sequence (the detection) is a decoupled 
evolution, we can do the selection earlier, when writing D(n 1). 

-

-
 Rule #3.  A coupled evolution can interchange x and y but also 
1 and z.  Although, we can do some term dropping before the last 
evolution, even if coupled.  In writing D(n 1) we will retain only the 
POs which contain x or y for the nucleus to be observed and z or 1 for 
the other nuclei.  Everything else is a NOT. 

-

 For instance, if we observe nucleus A (in an AMX system), the 
following terms must be kept: 
 
              [x11], [x1z], [xz1], [xzz], [y11], [y1z], [yz1], [yzz]. 
 
 Note.  If a pulse still follows, it is recommended to use utmost 
care in dropping terms.  An experienced student will find for example 
that if the observable is A and the last pulse is on X, terms like [1x], 
[1z], [zx], (no x or y in position A) can be labeled as NOT before the 
pulse since an X pulse will never render them observable.  
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APPENDIX L:  MAGNETIC EQUIVALENCE, 
THE MULTIPLET FORMALISM 

 
 While the PO formalism is basically a shorthand notation for 
density matrix calculations, we introduce here an even more compact 
notation (we call it the the multiplet formalism) to simplify the PO 
treatment of CHn systems.  In such a system n nuclei out of n+1 are 
magnetically equivalent. 
 The density matrix at thermal equilibrium for a CH3 system is: 
 
 D(0) = − p'[z111] − q'([1z11] + [11z1] + [111z]) (L1)  
 
We introduce the notation {1z} for the sum in parentheses and write 
D(0) as: 
 

 D(0) = − p'[z111] − q'{1z} (L2) 
 

The notation {1z} is not only shorter but it allows us to write the last 
sum without specifying the number of protons in the system CHn. We 
make the convention that: 
 
 {1z} = [1z11] + [11z1] + [111z] for CH3 
 

 {1z} = [1z1] + [11z] for CH2 
 

 {1z} = [1z] for CH 
 
Other examples of the { } notation: 
 
 {1x} = [1x1] + [11x] for CH2 
 

 {zy} = [zy11] + [z1y1] + [z11y] for CH3 
 
The sum { } has always n terms where n is the number of magneti-
cally equivalent nuclei.  In order to be consistent we have to write 
{z1} as: 
 
 {z1} = [z111] + [z111] + [z111] = 3[z111] for CH3 
 

 {z1} = 2[z11] for CH2 
 

 {z1} = [z1] for CH 
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With this convention we can rewrite (L2) as: 
 
                          (0) ( '/ ){ 1} '{1 }D p n z q z= − −  (L3) 
 
an expression valid for any n. 
 Let us apply a 90xX pulse to D(0). 
 

                           (L4) 90(0) ( '/ ){ 1} '{1 }xXD p n z⎯⎯⎯→− + q y
 

The expression above is easily obtained through the conventional PO 
rules applied to the expression (L1) or its equivalents for CH2 or CH. 
 The above example may inspire us to hope that any sequence 
involving a CH2 or CH3 system may be treated as a CH, just by 
replacing [ ] with { }.  Unfortunately this is not always true.  It is 
important for the user of this formalism to be aware of how far the { } 
notations can be used and when we have to give up and go back to the 
explicit [ ] notation. 
 
 Rule #1 
 Not all the POs in the basis set can be included in { } sums. For 
instance [1xz] is not a legitimate term of such a sum.  No more than 
one of the protons may come in the PO with x, y or z, the others must 
participate with a 1. 
 
 Rule #2 
 Rotations due to r.f. pulses do not break the { } formalism and 
can be treated according to the vectorial model.  We have done this in 
(L4). 
 
 Rule #3 
 Likewise, noncoupled evolutions (which are merely z-rotations) 
can be treated according to the vectorial representation. Example: 

{ } { }cos { }sinshift X
X Xzx zx t zy t⎯⎯⎯→ Ω + Ω  

 
We can satisfy ourselves that this is true in the case of CH2: 
 

{ } [ 1] [ 1 ]zx zx z x= +  

[ 1]cos [ 1]sin [ 1 ]cos [ 1 ]sinshift X
X X Xzx t zy t z x t z y⎯⎯⎯→ Ω + Ω + Ω +
{ }cos { }sinX Xzx t zy t= Ω + Ω

XΩ
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 Rule #4 
 A coupled evolution usually breaks the { } formalism, since it 
generates PO's that cannot be included in { } sums.  A fortunate 
exception we can take advantage of is presented by the sums: {1x}, 
{1y}, {zx}, {zy}.  The coupled evolution of any of these sums does 
not break  the { } formalism and can be treated according to Section 
II.7. 
 
 Rule #5 
 If the density matrix contains sums as {x1}, {yz} or {xy} and a 
coupled evolution follows, we have to give up the { } shorthand and 
go back to the regular PO formalism ([ ] notation). 
 Even here there is an exception and it is worth talking about 
because it may save a lot of term writing.  The exception works when 
the coupled evolution we are talking about is the last act of the 
sequence or is just followed by a decoupled evolution.  In this case we 
are interested in the observable terms only (see Appendix K) and the 
coupled evolution yields unexpectedly simple results (we observe 
nucleus A): 
  { 1} { 1} { 1} NOTn nx cC x sC y⎯⎯→ + +
  { 1} { 1} { 1} NOTn ny sC x cC y⎯⎯→− + +
  1 1{ } { 1} { 1} NOTn nxz sSC x cSC y− −⎯⎯→− + +
  1 1{ } { 1} { 1} NOTn nyz cSC x cSC y− −⎯⎯→− − +
  { } NOTxx ⎯⎯→
  { } NOTyx ⎯⎯→
  { } NOTxy ⎯⎯→
  { } NOTyy ⎯⎯→

cos ; cos ; number of protons
sin ; sin ; nonobservable terms

C

C

c t C Jt n
s t S Jt NOT

π
π

= Ω = =
= Ω = =

 
 
The above evolution rules can be verified by writing the product 
operators in the conventional way and calculating the evolution of the 
CHn system for n=1, 2, and 3, separately.  
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 Rule #6 
 The procedure for retrieving the magnetization components  in 
the { } formalism differs only slightly from that stated in Appendix J. 

 
( ) ( )
( ) (

/ ' coefficient of { 1}

/ ' coefficient of {1 }
xC oC

xH oH )
M nM p x

M M q x

= − ×

= − ×
 (L5) 

 
with similar expressions for My and Mz.  MoH is the equilibrium 
magnetization due to all n magnetically equivalent protons. 
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APPENDIX M:  ROTATIONS ABOUT  
NONTRIVIAL AXES 

 
 Rotations due to r.f. pulses follow in the PO formalism the 
pattern of vector kinematics.  In Section II.6 we have discussed 
rotations about the axes Ox and Oy.  In order to treat the general case 
(rotation axis with any spatial orientation) we use spherical 
coordinates as shown in Figure M.1.  The rotation axis makes an angle 
θ with Oz ( ) and its horizontal projection makes the 
angle Φ with Ox (positive sense for Φ is from Ox toward Oy). 

o0 180θ≤ ≤

 

               

F

q

Dw
rotation

axis

g B1

a

x

y

z

 
 

Figure M.1.  Rotation axis in spherical coordinates. 
 
 
 If the r.f. pulse is applied on resonance, θ = 90o.  For a deviation  
∆ω = γ Bo ωtr  from resonance, the angle θ is different from 90o; its 
value is defined by tanθ = γ B1/∆ω.  The angle Φ is the transmitter 
phase which is always taken with respect to an initially established 
receiver phase. 

−

 The result of a rotation by an angle α (right hand rule) about the 
axis defined above is described in Table M.1.  
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Table M.1.  Final Angular Momentum Components after Rotation by 
an Angle a about the Rotation Axis Defined by Angles q and Φ. 

 
Initial 
com-
ponent 

 
F  i  n  a  l     c  o  m  p  o  n  e  n  t  s 

 
 
 
 
    Ix 
 
 

 
 
         (1 cos )

x
I α− ×

   2 2sin cosθ× Φ +

       cos
x

I α+  
 
 

 
 
     (1 cos )

y
I α− ×      
2sin cos sinθ× Φ Φ +

     sin cos
y

I α θ+  

 

 
 
     (1 cos )

z
I α− ×      

 
sin cos cosθ θ× Φ −  

  
sin sin sin

z
I α θ− Φ  

 
 
 
 
 
    Iy 

 
 
      (1 cos )

x
I α− ×

Φ2sin cos sinθ× Φ −
 
    sin cos

x
I α θ−  

 
 

 
 
     (1 cos )

y
I α− ×  

  2 2sin sinθ× Φ +  
       cos

y
I α+  

 

 
 
     (1 cos )

z
I α− ×  

 sin cos sinθ θ× Φ +  
  

sin sin cos
z

I α θ+ Φ

 
 

 
 
 
    Iz 

 
 
      (1 cos )

x
I α− ×

sin cos cosθ θ× Φ +

sin sin sin
x

I α θ+ Φ  
 
 

 
 
     (1 cos )

y
I α− ×  

sin cos sinθ θ× Φ −  
sin sin cos

y
I α θ− Φ  

 

 
 
    (1 cos )

z
I α− ×  

       2cos θ× +  
       cos

z
I α+  
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 In Table M.2 we consider the particular case of an on-resonance 
pulse (θ = 90o). 
 
 

Table M.2.  Final Angular Momentum Components after Rotation by 
an Angle a about an Axis in the xy Plane (q=90o) Defined by Angle 
Φ. 

 
 
Initial 
com-
ponent 
 

 
 

F  i  n  a  l     c  o  m  p  o  n  e  n  t  s 
 

 
 
 
    Ix 

  
           

 

2cos
x

I Φ +

2cos sin
x

I α+ Φ

 

     
 (1 cos )

y
I α− ×  

 
      cos sin× Φ Φ  
 
 

 
    

sin sin
z

I α− Φ  
 

 
 
 
    Iy 

   
    (1 cos )

x
I α− ×

 
       cos sin× Φ Φ
 

     
   2sin

y
I Φ +   

   2cos cos
y

I α+ Φ  

 
 

 
    

sin cos
z

I α Φ  
 

 
 
    Iz 

 
 
   sin sin

x
I α Φ  

 
 
 

 
 
   sin cos

y
I α− Φ  

 

 
 
        cos

z
I α  
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Very often the phase angle Φ can only take one of the "cardinal" 
values  0o, 90o, 180o, 270o.  In this case, the product sinΦcosΦ 
vanishes and the expressions above become even simpler, as shown in 
Table M.3. 
 

Table M.3.  Final Angular Momentum Components after Rotation by 
an Angle a about an Axis in the xy Plane (q=90o) with the Angle Φ a 
Multiple of 90o. 
 

 
Initial 
com-
ponent 
 

 
 

F  i  n  a  l     c  o  m  p  o  n  e  n  t  s 

 
 
 
    Ix 

   
          

 

2cos
x

I Φ +

2cos sin
x

I α+ Φ

 
 

 
 
 
              0 
 

 
 
   sin sin

z
I α− Φ  

 

 
 
 
    Iy 

 
 
 
             0 
 

  
      2sin

y
I Φ +   

   2cos cos
y

I α+ Φ  

 
 

 
 
    sin cos

z
I α Φ

 

 
 
    Iz 

 
 
     sin sin

x
I α Φ  

 
 

 
 
   sin cos

y
I α− Φ  

 

 
 
        cos

z
I α  

 
 

 
Making Φ equal to 0o, 90o, 180o, 270o, in Table M.3, yields the 
rotation rules about Ox, Oy, − Ox, − Oy (phase cycling).  It is 
instructive to compare these results with those obtained by means of 
the vector representation. 
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