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5.  DENSITY MATRIX DESCRIPTION OF COSY  

(HOMONUCLEAR CORRELATION SPECTROSCOPY) 
 
 COSY (COrrelation SpectroscopY) is widely used, particularly 
for disentangling complicated proton spectra by proton-proton chemi-
cal shift correlation and elucidation of the coupling pattern.  Of 
course, other spin 1/2 systems such as 19F can be successfully studied 
with this 2D sequence.  The basic sequence is shown in Figure I.11.  

 
 

         

td

t(0) t(1) t(4)

90x

t(2) t(3)

90x

t e

 
 
 

Figure I.11. The Basic COSY sequence (without phase cycling): 
90x te 90x AT − − −

 
 
5.1  Equilibrium Populations 
 
 Since we deal with a homonuclear AX system, the populations 
at thermal equilibrium follow a pattern identical to that of INADE-
QUATE (see I.60 and I.61).  The initial density matrix is: 

                                   

0 0 0 0
0 1 0 0

(0)
0 0 1 0
0 0 0 2

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                     (I.90) 
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5.2  The First Pulse  
 

 Here, also, we can use the results from INADEQUATE (I.63) 
since the first pulse is a nonselective 90xAX: 

2 0
2 01(1)                           (I.91)
0 22

0 2

i i
i i

D
i i

i i

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 

 

5.3  Evolution from  t (1) to t (2) 
 

 Only nondiagonal terms are affected by evolution.  The single-
quantum coherences will evolve, each with its own angular frequency, 
leading to:  

1 0
* 1 0

(2)                        (I.92)
* 0 1

0 * * 1

A B
A C

D
B D

C D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

where                              

( ) ( )
( ) (
( ) (
( ) (
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/ 2 exp

/ 2 exp

/ 2 exp

/ 2 exp

e

e

e

e

A i i t

)
)
)

B i i

C i i t

D i i t

= − − Ω

= − − Ω

= − − Ω

= − − Ω

t

R

 (I.93) 

 
5.4  The Second Pulse 
 
 To calculate , we use the rotation operators 
for the 90xAX pulse given in (I.34) 

1(3) (2)D R D−=

1

1 1 1 1
1 1 1 11 1;
1 1 1 12 2

1 1 1 1

i i i i
i i i i

R R
i i i i

i i i i

−

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

− −
− −
− −
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The postmultiplication D(2)R yields 
1 1

* 1 * 1 * *1
* 1 * 1 * *2

1 * * * * * * 1 * *

iA iB i A B i A B iA iB
i A C iA iC iA iC i A C
i B D iB iD iB iD i B D

iC iD i C D i C D iC iD

+ + + − − + − + +⎡ ⎤
⎢ ⎥+ − + + − + + − +⎢ ⎥
⎢ ⎥+ − − + + + + − +
⎢ ⎥− + + + − − + + +⎣ ⎦

 
 

We then premultiply this result by 1R−  and obtain 
 

1(3) (2)D R D R−=  
4 * * *

* * *
* * *
* * *

* 4 * * *
* * *
* * *
* * *

1
4

iA iA A A A A iA iA
iB iB B B B B iB iB
iC iC C C C C iC iC
iD iD D D D D iD iD

A A iA iA iA iA A A
B B iB iB iB iB B B
C C iC iC iC iC C C
D D iD iD iD iD D D

A

+ − + + − + + +

+ − − + + + + +

+ − + − + + − −

+ − + + + − − −

+ + − + + + + −

+ − + − − − + +

− + + − + + + +

+ + − + − − − +

=
+ − * * 4 *

* * *
* * *
* * *

* * * 4
* * * *
* * *
* * *

A iA iA iA iA A A
B B iB iB iB iB B B
C C iC iC iC iC C C
D D iD iD iD iD D D

iA iA A A A A iA iA
iB iB B B B B iB iB
iC iC C C C C iC iC
iD iD D D D D iD iD

− − + − + +

+ + + + − + + −

+ + − − − + − +

− + + + + − + +

− − − + + + − +

− − + + − + − +

+ + + + + − − +

+ + + − + + − +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎤*
*
*
*

*
*
*

*
*
*
*

*

*
*

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎦

 

 
  (I.94) 
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One can check that the population sum 11 22 33 44d d d d+ + +  (trace of 
the matrix) is invariant, i.e., it has the same value for D(0) through 
D(3).  Also, D(3) is Hermitian (the density matrix always is).  In doing 
this verification we keep in mind that the sums *A A+ , *B B+ , 
etc., are all real quantities, while the differences *A A− , *B B− , 
etc., are imaginary.  This can be used to simplify the expression of 
D(3) by employing the following notations: 
 

      ( ) ( )12 12 12( / 2) exp ( / 2) cos sine eA i i t i t i t= − − Ω = − Ω − Ω =e

)ic

 

                      12 12 12 12( / 2)( ) (1/ 2)( )i c is s ic= − − = − +
      12 12* (1/ 2)(A s= − −  
 

With similar notations for B, C, and D we obtain: 
      ( )( )12 12 12 121 2 ; * ; *A s ic A A s A A= − + + = − − = −ic  

      ( )( )13 13 13 131 2 ; * ; *B s ic B B s B B ic= − + + = − − = −  

      ( )( )24 24 24 241 2 ; * ; *C s ic C C s C C= − + + = − − = −ic (I.95) 

      ( )( )34 34 34 341 2 ; * ; *D s ic D D s D D= − + + = − − = −ic  
 

With the new sine/cosine notations, D(3) becomes: 
 

12 13 12 13 12 13 12 13

24 34 24 34 24 34 24 34

12 13 12 13 12 13 12 13

24 34 24 34 24 34 24 34

12 13 12 13 12 13

24 34 24 34 24 3

4

4

1
44

c c s ic ic s is is

c c ic s s ic is is

s ic c c is is ic s

ic s c c is is s ic

ic s is is c c

s ic is is c c

+ + − + − − −

+ + − − − − + +

− − − + − + − −

+ − + − − + − +

− − − + −

− + + − − +
12 13

4 24 34

12 13 12 13 12 13 12 13

24 34 24 34 24 34 24 34

 
  (I.96)
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is is s ic ic s c c

− −
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+ − − + − −

− − − − − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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5.5  Detection 
 
 Since no other pulse follows after t(3) we will consider only the 
evolution of the observable (single quantum) elements d12, d34, d13, 
and d24 in the time domain td.  Before evolution they are (from I.96): 
 

                          ( )( )12 12 34 13 24(3) 4d i is is c c= + + + −  

                          ( )( )34 12 34 13 24(3) 4d i is is c c= + + − +  

                          ( )( )13 12 34 13 24(3) 4d i c c is is= + − + +  (I.97) 

                          ( )( )24 12 34 13 24(3) 4d i c c is is= − + + +  
 

Their complex conjugates, which are needed for the calculation of 
magnetization components, are: 
 

                         ( )( )*
12 12 34 13 24(3) 4d i is is c c= + + − +  

                         ( )( )*
34 12 34 13 24(3) 4d i is is c c= + + + −  

                         ( )( )*
13 12 34 13 24(3) 4d i c c is is= − + + +  (I.98) 

                         ( )( )*
24 12 34 13 24(3) 4d i c c is is= + − + +  

 

Each of the four matrix elements above contains all four frequencies 
evolving in domain te, namely: 12 34 13 24, , , and  .e e et t t etΩ Ω Ω Ω  
During detection, each of them will evolve with its own frequency in 
the domain td : 
 

             ( )( ) ( )*
12 12 34 13 24 12(4) 4 exp dd i is is c c i= + + − + Ω t  

             ( )( ) ( )*
34 12 34 13 24 34(4) 4 exp dd i is is c c i= + + + − Ω t  

             ( )( ) ( )*
13 12 34 13 24 13(4) 4 exp dd i c c is is i= − + + + Ω t  (I.99) 

             ( )( ) ( )*
24 12 34 13 24 24(4) 4 exp dd i c c is is i t= + − + + Ω  

 

 Expression (I.99) shows that  each td frequency is modulated by 
all four te frequencies.  Thus, we expect sixteen peaks in the 2D plot. 
Actually, there will be 32 peaks, because only the td domain is phase 
modulated, while the te domain is amplitude modulated (i.e., it 
contains sine/cosine expressions).  
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  Each sine or cosine implies both the positive and the negative 
frequency according to 

                ( ) (1cos exp exp
2jk jk e jk e jk ec t i t i t )⎡ ⎤= Ω = Ω + − Ω⎣ ⎦  

                ( ) (1sin exp exp
2jk jk e jk e jk eis i t i t i t )⎡ ⎤= Ω = Ω − − Ω⎣ ⎦  

This leads to the 32 peak contour plot in Figure I.12.  
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Figure I.12.  Contour plot of COSY without  phase cycling. The 
transmitter frequency is on one side of the spectrum.  
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 We can plot the positive frequencies only, but the amplitude 
modulation in domain te still is a major drawback since it requires 
placing the transmitter frequency outside the spectrum (i.e., we 
lose the advantage of quadrature detection in both domains).  The 
spectral widths have to be doubled and the data matrix increases by 
a factor of four. 
 If the transmitter is placed within the spectrum (e.g., between 
W12 and W24), a messy pattern is obtained as shown in Figure I.13. The 
next section shows how this can be circumvented by means of an 
appropriate phase cycling. 
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Figure I.13. Contour plot of COSY without phase cycling.  If the 
transmitter is placed within the spectrum, it causes overlap of positive 
and negative frequencies. 



 
 
 
 
 
 
 
52     Density Matrix Treatment 

6.  COSY WITH PHASE CYCLING 
 
6.1  Comparison with the Previous Sequence 
 
 The sequence for COSY with phase cycling shown in Figure 
I.14 differs from that discussed above (Figure I.11) only by the 
cycling of the second pulse. 
 
 

td

t(0) t(1) t(4)

90

t(2) t(3)

90x

te

F

 
 

Figure  I.14.  COSY sequence with phase cycling of second pulse: 
90x te 90F AT − − −

 
 Moreover, only two steps are theoretically necessary to 
eliminate negative frequencies in domain te.  The second pulse is 
successively phased in  x and y.  Rather than doing the density matrix 
calculations for an arbitrary phase F, we will take advantage of the 
fact that we have already treated the x phase in the previous section.  
Only the effect of 90yAX must then be calculated (see Figure I.15). 
 Since the two sequences in Figures I.11 and I.15 have a 
common segment [t(0) to t(2)], we can take  D(2) from the previous 
section [see (I.92). and (I.93)]. 

                             

1 0
* 1 0

(2)
* 0 1

0 * * 1

A B
A C

D
B D

C D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (I.100) 
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td

t(0) t(1) t(4)

90y

t(2) t(3)

90x

t e

 
 
 

Figure  I.15.  The second step of the phase cycled COSY sequence: 
90x te 90y AT − − −

 
 
6.2  The Second Pulse 
 
 The rotation operator for the 90yAX pulse can be obtained by 
multiplying R90yA by R90yX.  These operators are (see Appendix C): 

90 90

1 1 0 0 1 0 1 0
1 1 0 0 0 1 0 11 1;

0 0 1 1 1 0 1 02 2
0 0 1 1 0 1 0 1

yA yXR R

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 
 
The result of the multiplication, 90 yAXR R= , is shown below together 

with its reciprocal, 1R− . 

      1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 11 1;
1 1 1 1 1 1 1 12 2

1 1 1 1 1 1 1 1

R R−

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

(I.101) 
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The postmultiplication D(2)R yields  
1 1 1 1
1 * 1 * 1 * 1 *1
1 * 1 * 1 * *2

1 * * 1 * * 1 * * 1 * *

A B A B A B A B
A C A C A C A C
B D B D B D i B D

C D C D C D C D

− − + − − + + +⎡ ⎤
⎢ ⎥− + + + − − + − + +⎢ ⎥
⎢ ⎥− + + − + − + − + +
⎢ ⎥− − − + − − − + + +⎣ ⎦

 

 
Premultiplying this result by 1R−  gives 
 
                                        1(3) (2)D R D R−= =  
 

  

4 * * *
* * *
* * *
* * *

* 4 * * *
* * *
* * *
* * *

1
* *4
* *
* *
*

A A A A A A A A
B B B B B B B B
C C C C C C C C
D D D D D D D D

A A A A A A A A
B B B B B B B B
C C C C C C C C
D D D D D D D D

A A A A
B B B B
C C C C
D D D

− − + − − − + −
− − − − + − + −
− − + + + − − +
− − + − + + − +

− + + + − + +
− − − − + − + −
+ + − − − + + −
− + + + + − − −

− − + −
− + − +
− + + −
+ + −

4 *
* *
* *

* *

* * * 4
* * *
* * *
* * *

A A A A
B B B B
C C C C

D D D D D

A A A A A A A A
B B B B B B B B
C C C C C C C C
D D D D D D D D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − + −⎢ ⎥
⎢ ⎥+ + + +
⎢ ⎥

+ + − −⎢ ⎥
⎢ ⎥+ − − + −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− + + + − + + +
⎢ ⎥
− + − + + + + +⎢ ⎥

⎢ ⎥+ − − + − − + +
⎢ ⎥
+ − − − − + + +⎢ ⎥

⎢ ⎥⎣ ⎦⎢ ⎥

*
*
*
*

*
*
*

*

*

*
*
*
*

 (I.102) 
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With the same notations as in (I.95) : 
 
      ( )( )12 12 12 121 2 ; * ; *A s ic A A s A A= − + + = − − = −ic  

      ( )( )13 13 13 131 2 ; * ; *B s ic B B s B B ic= − + + = − − = −  

      ( )( )24 24 24 241 2 ; * ; *C s ic C C s C C= − + + = − − = −ic (I.103) 

      ( )( )34 34 34 341 2 ; * ; *D s ic D D s D D= − + + = − − = −ic  
 
 
D(3) becomes 
 
 

12 13 12 13 12 13 12 13

24 34 24 34 24 34 24 34

12 13 12 13 12 13 12 13

24 34 24 34 24 34 24 34

12 13 12 13 12 13

24 34 24 34 24

4

4

1
44

s s ic s s ic ic ic

s s s ic ic s ic ic

ic s s s ic ic s ic

s ic s s ic ic ic s

s ic ic ic s s

ic s ic ic s

+ + − + + − − −

+ + − − − − + +

+ + − + + − − −

− + + − + − − +

+ + − + + −

+ − − + − +
12 13

34 24 34

12 13 12 13 12 13 12 13

24 34 24 34 24 34 24 34

  (I.104)

4

ic s

s s ic

ic ic s ic ic s s s

ic ic ic s s ic s s

− −

+ −

+ + − + + − − −

− − + + + + − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
We have to consider only the observable matrix elements :  
 

                      

( )( )
( )( )
( )( )
( )(

12 12 34 13 24

34 12 34 13 24

13 12 34 13 24

24 12 34 13 24

(3) 4

(3) 4

(3) 4

(3) 4

d i c c is is

d i c c is is

d i is is c c

d i is is c c

= − − − +

= − − + −

= − + − −

= + − − − )

 (I.105) 
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 Comparing the results for phase y (I.105) with those for phase x 
(I.97) shows that c and − is are interchanged in all terms.  This will 
lead to the desired phase modulation.  Addition of (I.97) and (I.105) 
gives 
   

( ) ( )12 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i is c is c c is c is= − + − + − + − +⎡ ⎤⎣ ⎦    

( ) ( )34 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i is c is c c is c is= − + − + − + + −⎡ ⎤⎣ ⎦

( ) ( )13 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i c is c is is c is c= − + − + + − + −⎡ ⎤⎣ ⎦  

( ) ( )24 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i c is c is is c is c= − + + − + − + −⎡ ⎤⎣ ⎦  
 

  (I.106) 
 
The complex conjugates of the matrix elements above (needed for the 
expression of the magnetization components) are 
 

 ( ) ( )*
12 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i is c is c c is c is= + + + + − − + +⎡ ⎤⎣ ⎦  

( ) ( )*
34 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i is c is c c is c is= + + + + + + − −⎡ ⎤⎣ ⎦  

( ) ( )*
13 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i c is c is is c is c= − − + + + + + +⎡ ⎤⎣ ⎦  

( ) ( )*
24 12 12 34 34 13 13 24 24(3) 4 ) ( ) ( ) (d i c is c is is c is c= + + − − + + + +⎡ ⎤⎣ ⎦  

 

  (I.107) 
 
We observe that every parenthesis represents an exponential, therefore 
we can use the notation 
                                  ( )expjk jk jk jk ee c is i t= + = Ω  (I.108) 

 
With this notation (I.107) becomes 
 

                           ( )( )*
12 12 34 13 24(3) 4d i e e e e= + + − +  

                           ( )( )*
34 12 34 13 24(3) 4d i e e e e= + + + −  

                           ( )( )*
13 12 34 13 24(3) 4d i e e e e= − + + +  (I.109) 

                           ( )( )*
24 12 34 13 24(3) 4d i e e e e= + − + +  
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 The reader is reminded that the above expressions represent the 
summation from two acquisitions, one with phase x and the other with 
phase y for the second pulse.  Instead of sines or cosines, they contain 
only exponentials.  In other words we have achieved phase modula-
tion in the domain te. 
 
6.3  Detection 
 
 The evolution during td is identical for the two acquisitions, 
therefore we can apply it after the summation (in I.109). 
 

                ( )( ) ( )*
12 12 34 13 24 12(4) 4 exp dd i e e e e i= + + − + Ω t  

                ( )( ) ( )*
34 12 34 13 24 34(4) 4 exp dd i e e e e i= + + + − Ω t  

                ( )( ) ( )*
13 12 34 13 24 13(4) 4 exp dd i e e e e i= − + + + Ω t  (I.110) 

                ( )( ) ( )*
24 12 34 13 24 24(4) 4 exp dd i e e e e i t= + − + + Ω  

 
 The expressions (I.110) correspond to a contour plot with 16 
peaks, as represented in Figure I.16.  This pattern is no longer depend-
ent on the position of the transmitter since we have achieved the 
equivalent of quadrature detection in both domains.  There are four 
diagonal terms, each having the same frequency in both domains te 
and td.  If the two frequencies differ only by J (e.g., we have W12 in 
domain te and W34 in domain td) we have a "near-diagonal" peak. There 
are four such peaks.  The remaining eight are referred to as off-
diagonal or cross-peaks and their presence indicates that spins A and 
X are coupled.  Two noncoupled spins will exhibit only diagonal 
peaks.  We can verify that this is so by discussing what happens if J 
becomes vanishingly small.  In this case W12 = W34 = WA (center of the 
doublet); likewise W13 = W24 = WX.  Therefore each group of 4 peaks in 
Figure I.16 collapses into a single peak in the center of the 
corresponding square.  The diagonal and near-diagonal peaks of 
nucleus A are all positive and they collapse into one diagonal peak, 
four times larger.  The same is true for nucleus X.  The off-diagonal 
peaks come in groups of four, two positive and two negative.  When 
they collapse (J=0) they cancel each other and there will be no off-
diagonal peak.  The net result is a spectrum with just two peaks, both 
on the diagonal,  with frequencies  WA  and  WX.  The above discussion  
 



 
 
 
 
 
 
 
58     Density Matrix Treatment 

shows that COSY is not suited for spectra with ill-resolved multiplets 
because there will be destructive overlap in the off-diagonal groups. 
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Figure I.16.  Contour plot of COSY with phase cycling.  Open circles 
are positive peaks; shaded circles are negative peaks. 
 
 

 There is one more observation.  It is common practice to plot 
the 2D spectra in the "magnitude calculation" (MC) or "absolute 
value" mode, to avoid phasing problems.  The magnitude calculation 
(the absolute value of a complex quantity) is performed by the 
computer after Fourier transform in both domains.  Two peaks, one 
positive and one negative, will both become positive in MC, provided 
they are well resolved.  If they are ill-resolved, they will cancel each 
other partially and will yield a much smaller signal.  The MC is 
applied to this signal and it cannot represent the original amplitude of 
the two peaks.  Therefore  the use of magnitude calculation does not 
provide a solution for poorly resolved multiplets.  
 One word about the utility of phase cycling.  While it is well 
known that this procedure helps canceling out radiofrequency 
interferences and pulse imperfections, we have just seen that it can be  
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useful for other purposes.  In INADEQUATE it helps eliminate the 
NMR signal from the 13C-12C pairs while preserving that from 13C-13C 
pairs.  In COSY it helps achieve phase modulation in domain te.  In 
both cases a two step cycling is theoretically sufficient.  However, to 
efficiently compensate for hardware imperfections, cycling in more 
than two steps is generally employed. 
 
 

7. CONCLUSION OF PART I 
 
 The density matrix approach described above constitutes a very 
clear and useful means for understanding the multipulse sequences of 
modern NMR.  The limitation of this approach is the rapidly 
increasing volume of calculation with increasing number of nuclei.  
The size of the matrix goes from 16 elements for a two spin 1/2 system 
to 64 and 256 elements for three and four spin systems, respectively. 
 We must therefore resort to an avenue which affords a 
"shorthand" for the description of rotations and evolutions. The new 
avenue we present in the second part of this monograph is the product 
operator formalism. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
________________________________________________________ 
Answer to the problem on page 44: The contour plot in Figure I.10 is the 
carbon-carbon connectivity spectrum of 2-bromobutane. 


