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5. DENSITY MATRIX DESCRIPTION OF COSY
(HOMONUCLEAR CORRELATION SPECTROSCOPY)

COSY (COrrelation SpectroscopY) is widely used, particularly
for disentangling complicated proton spectra by proton-proton chemi-
cal shift correlation and elucidation of the coupling pattern. Of
course, other spin 1/2 systems such as 19F can be successfully studied
with this 2D sequence. The basic sequence is shown in Figure 1.11.
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Figure 1.11. The Basic COSY sequence (without phase cycling):
90x — t, — 90x — AT

5.1 Equilibrium Populations

Since we deal with a homonuclear AX system, the populations
at thermal equilibrium follow a pattern identical to that of INADE-
QUATE (see 1.60 and 1.61). The initial density matrix is:
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5.2 The First Pulse

Here, also, we can use the results from INADEQUATE (1.63)
since the first pulse is a nonselective 90xAX:
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5.3 Evolution from t (1) tot (2)

Only nondiagonal terms are affected by evolution. The single-
guantum coherences will evolve, each with its own angular frequency,
leading to:
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where (1.93)
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5.4 The Second Pulse

To calculate D(3)=R™'D(2)R, we use the rotation operators
for the 90xAX pulse given in (1.34)
1 i i -1 1 - - -1
i1 -1 i . - 1 -1 —i
i -1 01 i 204 -1 1 -
-1 i i 1 -1 - - 1
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The postmultiplication D(2)R yields

1+iA+iB i+A-B i—-A+B
1| 1+A*-C 1+iA*+iC -1+iA*+iC
2| i+B*-D  -1+iB*+iD  1+iB*+iD
-1+iC*+iD* i+C*-D* i—-C*+D*

We then premultiply this result by R™ and obtain
DB)=R'D(2)R

+A+A*  4-iA+iIA*  +HIA+IAT +A-A*
+B-B* +iB-iB* —-iB-iB* +B+B*
-C+C* +iC-iC* +iC +iC* +C+C*
+D+D* -iD+iD* -iD-iD* -D+D*

FNg

+A-A* —iA—-iA*  44+iIA-IA*  +A+A*
+B+B* +iB+iB* -iB+iB* +B-B*
+C+C* -iC-iC* —iC+iC* -C+C*
-D+D* +iD+iD* +iD-ID* +D+D*

—-iB-iB* +B+B* -B+B* -iB+iB*
+iC+iC* +C+C* +C-C* —iC+iC*
+iD+iD* +D-D* +D+D* -iD+iD*

[4+iA—iA*  +A+A* A+ A*  +HA+IA* |
+iB—-iB* -B+B* +B+B* +iB+iB*
+iC—iC* +C-C* +C+C* —iC-iC*
+iD-iD* +D+D* +D-D* -iD-iD*

—IA—iA* -A+A* +A+A*  4-jA+iA*
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-1+iA+iB
i—A*+C
i-B*+D

1+iC*+iD*

(1.94)



48  Density Matrix Treatment

One can check that the population sum d,, +d,, +d,; +d,, (trace of
the matrix) is invariant, i.e., it has the same value for D(0) through
D(3). Also, D(3) is Hermitian (the density matrix always is). In doing
this verification we keep in mind that the sums A+ A*, B+B™*,
etc., are all real quantities, while the differences A— A*, B-B™,
etc., are imaginary. This can be used to simplify the expression of
D(3) by employing the following notations:
A=(-i/2)exp(-iQ,t, ) = (-i/2)(cosQ,t, —isinQ,,t, ) =
= (-1/2)(c, —is,) =—(/2)(s, +icy,)
A* = _(l/ 2)(312 - i(:12)
With similar notations for B, C, and D we obtain:
A=—(1/2)(s, +ic,) ; A+A*=-s, ; A-A*=-ic,
B=—(4/2)(s;+ic;) ; B+B*=-s; ;B-B*=—ic,
C=—(1/2)(sy +ic,) ; C+C*=-s,, ; C—C*=—ic,, (1.95)
D=—(1/2)(sy +iCy) ; D+D*=-s,, ; D—D*=—ic,,

With the new sine/cosine notations, D(3) becomes:

4+C,+C5  —S,+IC;  IC, —S; IS, =155
+Cy +Cy  —iCy =Sy, =Sy, —iCy  HiSy, +1iSy,
=S, — 1G5 4- Cip +C3 IS, +1S, —IC, —Si5
+iC,, — S, +C, —Cyy  —iS,, +iSy, =S, +iCy,
1
= . . . . (1.96)
4| —IC, =S5 1S, — IS, 4+C,—Cy3 —S,—ICy
TSpq TGy HISy —IS5 mCy Gy G, — S5y
1S, +1833 ICj, =S5 =S, T1C;5 4- Cp —Ci3
ISy, = 1S3, =Sy, —1Cy —1Cyy — Sz —Cyy —Cy
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5.5 Detection

Since no other pulse follows after t(3) we will consider only the
evolution of the observable (single quantum) elements d,,, d,,, d,s,
and d,, in the time domain t,. Before evolution they are (from 1.96):

dy, (3) =(i/4)(+isy, +isy, + €3 —Cyy )
dy, (3) = (i/4)(+is,, +isy, —C3 +Cyy)
dy;(3) = (i/4)(+¢y, —Cyy +is; +is,, ) (1.97)
d,, (3) =(i/4)(—Cpp +Cyy +1iS,5 +1S,,)

Their complex conjugates, which are needed for the calculation of
magnetization components, are:

d;, (3) =(i/4)(+is,, +isy,, —C3+Cyy )
dyy (3) = (i/4)(+isy, +iS3 +Ci3 —Cyy)
diy(3) =(1/4)(—Cy, +Cyy +iSy5 15,4 ) (1.98)
d,, (3) =(i/4)(+Cy, — Cyy 1S5 +1S,,)
Each of the four matrix elements above contains all four frequencies

evolving in domain t, namely: Q,t,, Q,t., Q.t., and Q,t..

During detection, each of them will evolve with its own frequency in
the domain t:

d(4) = (i/4)( Jexp(iQyt, )
dy, (4) = (i/4)(+isy, +isy +Ci3 —Cyp ) EXP(IQ4,t4 )
dps(4) = (i/4)(—Cpy +Cay +is5 +15,, ) XP (It )
Ay (4) = (1/4)(+Cy, — Cyy +i5y5 1, ) eXP (IQ,t, )

Expression (1.99) shows that each t, frequency is modulated by
all four t, frequencies. Thus, we expect sixteen peaks in the 2D plot.
Actually, there will be 32 peaks, because only the t; domain is phase
modulated, while the t, domain is amplitude modulated (i.e., it
contains sine/cosine expressions).

i/4)(+is, +iS,, —Cj5 +Cyy ) EXP

(1.99)
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Each sine or cosine implies both the positive and the negative
frequency according to

Cj =COSQ,t, :%[exp(iﬂjkte)+exp(—inkte)]

. .. 1 . .
IS, =1sInQ ;. t, :E[exp(lekte)—exp(—lekte )]
This leads to the 32 peak contour plot in Figure 1.12.
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Figure 1.12. Contour plot of COSY without phase cycling. The
transmitter frequency is on one side of the spectrum.
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We can plot the positive frequencies only, but the amplitude
modulation in domain t, still is a major drawback since it requires
placing the transmitter frequency outside the spectrum (i.e., we
lose the advantage of quadrature detection in both domains). The
spectral widths have to be doubled and the data matrix increases by
a factor of four.

If the transmitter is placed within the spectrum (e.g., between
Q,, and Q,,), a messy pattern is obtained as shown in Figure 1.13. The
next section shows how this can be circumvented by means of an
appropriate phase cycling.
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Figure 1.13. Contour plot of COSY without phase cycling. If the
transmitter is placed within the spectrum, it causes overlap of positive
and negative frequencies.
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6. COSY WITH PHASE CYCLING

6.1 Comparison with the Previous Sequence

The sequence for COSY with phase cycling shown in Figure
1.14 differs from that discussed above (Figure 1.11) only by the
cycling of the second pulse.
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Figure 1.14. COSY sequence with phase cycling of second pulse:
90x — t, — 90 — AT

Moreover, only two steps are theoretically necessary to
eliminate negative frequencies in domain t,. The second pulse is
successively phased in x and y. Rather than doing the density matrix
calculations for an arbitrary phase @, we will take advantage of the
fact that we have already treated the x phase in the previous section.
Only the effect of 90yAX must then be calculated (see Figure 1.15).

Since the two sequences in Figures 1.11 and 1.15 have a
common segment [t(0) to t(2)], we can take D(2) from the previous
section [see (1.92). and (1.93)].

1 A B O

D(2) = At 100 C (1.100)
B* 0 1 D
0 C* D* 1
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Figure 1.15. The second step of the phase cycled COSY sequence:
90x — t, — 90y — AT
6.2 The Second Pulse

The rotation operator for the 90yAX pulse can be obtained by
multiplying Rgy,, by Rgq,x. These operators are (see Appendix C):

1 1 0 0 1 0 1 O
R 1 11 0 0 e 1 0 1 0 1
A f2l0 0 1 1| ™ 2l-1 0 1 0
0 0 -1 1 0 -1 0 1

The result of the multiplication, R = Ry, , is shown below together

with its reciprocal, R™.

1 1 1 1 1 -1 -1 1

-1 1 -1 1 1 1 -1 -1
R:l ; R*lzi (1.101)

2.1 -1 1 1 21 -1 1 -1

1 -1 -1 1 1 1 1 1
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The postmultiplication D(2)R yields

1

2

1-A-B
-1+ A*+C
-1+B*+D
1-C*-D*

Premultiplying this result by R™" gives

N

[4— A—A*
_B_B*
-C-C*
_D_D*

—-A+ A*
_B_B*
+C+C*
-D+D*

_A_A*
-B+B*
-C+C*
+D+D*

—-A+ A*
-B+B*
+C-C*
+D-D*

1+ A-B 1-A+B 1+ A+B

1+ A*-C -1+ A*-C 1+ A*+C

-1+B*-D 1+B*-D i+B*+D
-1+C*-D* -1-C*+D* 1+C*+D*

D@R)=R'D(2)R=

+A-A*  —-A-A* +A-A*
-B-B* +B-B* +B-B*
+C+C* +C-C* -C+C*
+D-D* +D+D* -D+D*
4+ A+ A* —-A+A* A+ A*
-B-B* +B-B* +B-B*
-C-C* -C+C* +C-C*
+D+D* +D-D* -D-D*
+A-A* 4-A-A* +A-A*
-B+B* +B+B* +B+B*
+C-C* +C+C* -C-C*
-D+D* -D-D* +D-D*
+A+A*  -A+A* 4+ A+A*
-B+B* +B+B* +B+B*
-C+C* -C-C* +C+C* (1.102)
-D-D* -D+D* +D+D*
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With the same notations as in (1.95) :
=—(Y2)(sy, +ic,) ; A+A*=—s, ; A-A*=-ic,
B=-(1/2)(s;+ic;) ; B+B*=-s, ; B-B*=—ic,
=—(1/2)(s,, +icy) ; C+C*==s,, ; C—C*=-ic,, (1.103)
D=—(1/2)(sy, +iCy) ; D+D*==s,, ; D—D*=—ic,,
D(3) becomes
[4+s,+8, —iC,+S, +S,—iCy —iC,—IiC; |
+8p +Sgy =Sy —iCy Gy =Sy +iCy +iCy,
+iC, +S,; 4-S,+S,; +iC,—ic,; —S,—iC,
—S,, +iCyy, +8,, =Sy, +iCy —iCy  —ICy +S,,
1
- . i . ) (1.104)
4| +s, +iC;  —iC, +iC; 4+S,-S5; —IC, =S
+iCy =Sy —iCy +iCy =Sy +Sy Sy —iCy,
+ic, +ic;  —S, +ic;  +iC,—S; 4-S,-S;
—iC,, —iC;,  +iCyy +S3,  +S,, +iCy, —S,, — Sy,
We have to consider only the observable matrix elements :
d12 (3) = (i/4)(_012 CS4 ISlS + is24)
d34 3= (i/4)(_C12 Cay + iSlS - isz4) (1.105)
d13 )= (i/4)(_i312 + i534 Cis — C24)
d,, (3) =(i/4)(+is,, —isy, —C;3—Cyy)
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Comparing the results for phase y (1.105) with those for phase x
(1.97) shows that ¢ and — is are interchanged in all terms. This will

lead to the desired phase modulation. Addition of (1.97) and (1.105)
gives

dy, (3) = (i/4)[ (s, — o) + (iS5, — Cyy) + (G —i85) + (—Cyp +isy, ) |

d,,(3) = (|/4)[(is12 —Cp,) + (iSy, —Cy) + (=Cyy +i8,5) + (G, —iS,, )]
dy3(3) = (i/4)[ (1 —is1p) + (—Cyy +iS5,) + (iS5 = Cy) + (iS4 —Cyy ) |
Ay, (3) = (i/4)[ (=Cpp +18,,) + (Cyy —i85) + (i, — €13) + (iS4 = C,y ) |

(1.106)

The complex conjugates of the matrix elements above (needed for the
expression of the magnetization components) are

d,(3) = (i/4)[(is12 +Cp,) + (iSy, +Cyy ) + (=Cp —iS5) +(Cyy + isz4)]
day (3) = (i/4)[ (isy, +Cp) + (i3, +Co0) + (Cip +iS35) + (—Cpy — 5, ) |
dfs ©) ('/4)[( —i8y,) +(Cyy +1i85,) + (IS5 +Cp3) + (iS,, +Cyy )]
(i/4)

d,, (3) = '/4 [(Clz +18),) +(=Cyy —1iS5,) + (iS5 +Cy5) + (IS, +Cyy )]

(1.107)

We observe that every parenthesis represents an exponential, therefore
we can use the notation

&) =Cj +is; = exp(inkte) (1.108)

With this notation (1.107) becomes

dy, (3)=(i/4)(+e, +e, —€; +€,,)
dy, (3) =(i/4)(+ey, +€ +€5 -8y, )
d,(3) =(i/4)(—e, +ey +e5+8y) (1.109)
d,, (3) =(i/4)(+e, —ey +e;+6y,)
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The reader is reminded that the above expressions represent the
summation from two acquisitions, one with phase x and the other with
phase y for the second pulse. Instead of sines or cosines, they contain
only exponentials. In other words we have achieved phase modula-
tion in the domain t,.

6.3 Detection

The evolution during t, is identical for the two acquisitions,
therefore we can apply it after the summation (in 1.109).

dy,(4) = (i/4)(+e, +ey —e; +6,, ) exp(iQ,t,
d:,(4) = (i/4)( e, B (i1,
d1*3 (4)= ('/4)( € +8, +E5+ e24)exp(|Ql3t

(i/4)( Jexp(

d,,(4)=(i/4)(+e, —e,, +&, +6,,)exp(iQ,,t,

+€,+6;, +€,—
(1.110)

)
)
)
)

The expressions (1.110) correspond to a contour plot with 16
peaks, as represented in Figure 1.16. This pattern is no longer depend-
ent on the position of the transmitter since we have achieved the
equivalent of quadrature detection in both domains. There are four
diagonal terms, each having the same frequency in both domains t,
and t;. If the two frequencies differ only by J (e.g., we have Q,, in
domain t, and Q,, in domain t,) we have a "near-diagonal” peak. There
are four such peaks. The remaining eight are referred to as off-
diagonal or cross-peaks and their presence indicates that spins A and
X are coupled. Two noncoupled spins will exhibit only diagonal
peaks. We can verify that this is so by discussing what happens if J
becomes vanishingly small. In this case Q;, = Q,, = Q, (center of the
doublet); likewise Q,; = Q,, = Q,. Therefore each group of 4 peaks in
Figure 1.16 collapses into a single peak in the center of the
corresponding square. The diagonal and near-diagonal peaks of
nucleus A are all positive and they collapse into one diagonal peak,
four times larger. The same is true for nucleus X. The off-diagonal
peaks come in groups of four, two positive and two negative. When
they collapse (J=0) they cancel each other and there will be no off-
diagonal peak. The net result is a spectrum with just two peaks, both
on the diagonal, with frequencies Q, and Q. The above discussion



58  Density Matrix Treatment

shows that COSY is not suited for spectra with ill-resolved multiplets
because there will be destructive overlap in the off-diagonal groups.

QeA
e 0 0
24 00
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Figure 1.16. Contour plot of COSY with phase cycling. Open circles
are positive peaks; shaded circles are negative peaks.

There is one more observation. It is common practice to plot
the 2D spectra in the "magnitude calculation” (MC) or "absolute
value" mode, to avoid phasing problems. The magnitude calculation
(the absolute value of a complex quantity) is performed by the
computer after Fourier transform in both domains. Two peaks, one
positive and one negative, will both become positive in MC, provided
they are well resolved. If they are ill-resolved, they will cancel each
other partially and will yield a much smaller signal. The MC is
applied to this signal and it cannot represent the original amplitude of
the two peaks. Therefore the use of magnitude calculation does not
provide a solution for poorly resolved multiplets.

One word about the utility of phase cycling. While it is well
known that this procedure helps canceling out radiofrequency
interferences and pulse imperfections, we have just seen that it can be
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useful for other purposes. In INADEQUATE it helps eliminate the
NMR signal from the 13C-12C pairs while preserving that from 13C-13C
pairs. In COSY it helps achieve phase modulation in domain t,. In
both cases a two step cycling is theoretically sufficient. However, to
efficiently compensate for hardware imperfections, cycling in more
than two steps is generally employed.

7. CONCLUSION OF PART I

The density matrix approach described above constitutes a very
clear and useful means for understanding the multipulse sequences of
modern NMR. The limitation of this approach is the rapidly
increasing volume of calculation with increasing number of nuclei.
The size of the matrix goes from 16 elements for a two spin 1/2 system
to 64 and 256 elements for three and four spin systems, respectively.

We must therefore resort to an avenue which affords a
"shorthand" for the description of rotations and evolutions. The new
avenue we present in the second part of this monograph is the product
operator formalism.

Answer to the problem on page 44: The contour plot in Figure 1.10 is the
carbon-carbon connectivity spectrum of 2-bromobutane.



