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APPENDIX B:  DENSITY MATRIX FORMALISM 
 
Wave functions and density matrix 
 
 The density matrix is a tool used to describe the state of a spin 
ensemble as well as its evolution in time.  It allows the passage from 
the probabilistic treatment of a system of a few spins to the statistical 
treatment of a large ensemble of such systems. 
 Since we are interested in the magnetization we want to express 
this observable in terms of the wave function j  of the system.  Let us 
concentrate on one of the nuclei in the system (e.g., nucleus A).  The x 
component of the magnetic moment of nucleus A has the expectation 
value: 
                            xA xA A xAIµ ϕ µ ϕ γ ϕ ϕ= =  (B1) 
 
where IxA is the operator of the x-component of the angular momentum 
of nucleus A in the given system.  For instance, in an AX system the 
IxA matrix is 

                                         

0 1 0 0
1 0 0 01
0 0 0 12
0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                 [see (C12)] 

 
 In order to calculate the macroscopic magnetization, we have to 
take the average (denoted by a bar) over the whole ensemble: 
                              o oxA xA A xAM N N Iµ γ ϕ ϕ= =  (B2) 
 
where No is the number of systems per unit volume, equal to the 
number of A spins per unit volume.  Similar equations can be written 
for every component and for every nucleus in the system. 
 In the Schrödinger representation IxA is a time independent 
operator, therefore the time dependence of MxA is contained in the 
wave function j of each system.  This, in turn, may be expressed as a  
 
linear combination of the eigenstates n  of the system: 
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1

N

n
n

c nϕ
=

= ∑  

 

N=number of quantum states of the system 
 

Here again we observe that the eigenfunctions n  are time independ-
ent (solutions of the time independent Schrödinger equation), so the 
time dependence is contained only in the coefficients cn.  In order to 
introduce these coefficients in the expression (B2), we put 
 

xAIϕ ϕ  

in matrix form.  The "ket" ϕ  is a column matrix: 

                                          

1

2

.

.

n

c
c

c

ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The "bra"  ϕ   is a row matrix 

                              * * *
1 2 . . nc c cϕ ⎡ ⎤= ⎣ ⎦  

 
The angular momentum operator IxA is an N by N square matrix. 

11 12 1

21 22 2

1 2

. .

. .
. . . . .
. . . . .

. .

N

N

N N NN

I I I
I I I

I I I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The subscript "xA" has been omited to simplify the writing. 
 
 Using the expressions for ϕ , |IxA|, and ϕ  on the previous 
page, we obtain: 
 

xAIϕ ϕ * * *
1 2 . . Nc c c⎡ ⎤= ⎣ ⎦  
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11 12 1 1

21 22 2 2

1 2

. .

. .
. . . . . .
. . . . . .

. .

N

N

N N NN N

I I I c
I I I c

I I I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥× ×
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

*
nm m n

 

 
1

2

* * * *
1 2 . . .

.

m m
m

m m
m

n n nm m
n m n m

N m m
m

I c

I c

c c c c I c I c c

I c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤= × = =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

∑

∑

∑∑ ∑∑

∑

 
  (B4) 
We have obtained a compact expression of 

                                                     xAIϕ ϕ  
 

In order to introduce it in the expression (B2) of the magnetization we 
have to take its average over the whole ensemble of systems. The 
matrix elements Imn are characteristic for the system.  They are 
identical for all the systems in our macroscopic ensemble.  Therefore 
in (B4) only the product    has to be averaged over the ensemble 
and we get 

*
m nc c

                                           
*

oxA A nm m n
n m

M N I cγ= c∑∑  (B5) 
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where Inm are the matrix elements of the operator IxA.  The only time 
variable elements in (B5) are the averaged products  
                                                   *

m nc c .   
There are N2 such products which, arranged in a square table, form the 
density matrix: 

   

11 12 1

21 22 2

1 2

. .

. .
. . . . .                         (B
. . . . .

. .

N

N

N N NN

d d d
d d d

D

d d d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

6)

 
with                                        *

mn m nd c c=  (B7) 
 
We notice that   , i.e., D is a Hermitian matrix. *

nm mnd d=
 
Density matrix and magnetizations 
 
 We rewrite (B5) making use of the expression (B7) 

                       
*

o oxA A nm mn A nm nm
n m n m

M N I d N Iγ γ= = d∑∑ ∑∑  (B8) 

 
Relation (B8) represents the practical mode of calculating an 
observable magnetization component (in our case MxA) when the 
density matrix D is known: 
 Multiply every matrix element of IxA with the complex conjugate 
of the corresponding element of D and add all the products. Multiply 
the sum by NogA . 
 It is convenient to express the factor NogA  in terms of the 
equilibrium magnetization MoA: 

                                   
2 2

o
o

( 1)
3

A
A

N I I B
M

kT
γ +

= o  (B9) 

 
Note that MoA is always a positive quantity, the absolute value of the 
equilibrium magnetization for nucleus A.  For I = 1/2 the expression 
(B9) becomes: 
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2 2

o
o 4

A
A

N B
M

kT
γ

= o  (B10) 

 
In (I.3) we have introduced the quantity   

                                   oAA A Bh
p

kT kT kT
γν ω

= = =  (B11) 

 
related to the Boltzmann factor of nucleus A.  In accordance with our 
sign convention (negative g ) this can be rewritten as   

                                              oA B
p

kT
γ

= −  (B12) 

and (B10) becomes 

                                          o
o 4

A
A

N p
M

γ
= −  

The factor o AN γ  in (B8) can now be written in the more convenient 
form 

                                          o
4

AN
p

γ = − oAM  (B13) 

 
For nucleus X (see I.4) the factor is  

                                          o o
4

X XN M
q

γ = −  

 
Let us apply the "recipe" for finding the magnetization components to 
the system AX (two spin 1/2 nuclei).  The number of states is N=4 and 
the (Hermitian) density matrix has the rank 4: 

                                 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

d d d d
d d d d

D
d d d d
d d d d

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
where    and  djj = real  (*

kj jkd d= *
jj jjd d= ). 

 The angular momentum components for the AX system are 
given in (C12) through (C15).  We have for instance 
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1 0 0 0
0 1 0 01
0 0 1 02
0 0 0 1

zAI

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

                              (B14) 

   
in which only four matrix elements out of 16 are nonvanishing. 
 Using (B8) and (B14) in this particular case we get: 

                       3311 22 444
2 2 2 2zA oA

dd d d
M M

p
⎛ ⎞= − − + −⎜ ⎟
⎝ ⎠

 

                             ( 11 22 33 44
2

oA )M d d d d
p

= − − + −  (B15) 

 
In the x direction 

  

0 1 0 0
1 0 0 01                                (B16)
0 0 0 12
0 0 1 0

xAI

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
and the "recipe" leads to 

                      ( )12 21 34 43
2 * * * *xA oAM M d d d d
p

= − + + +  (B17) 

 

In the same way we obtain 

                       ( )12 21 34 43
2 * * * *yA oA
iM M d d d d

p
= − + −  (B18) 

 

 It is always convenient to combine Mx and My in one complex 
quantity, the transverse magnetization 
 

                                             T x yM M iM= +  (B19) 
 

This leads to the simplified form 

                                 ( 12 34
4 * *TA oAM M d d
p

= − + )  (B20) 
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 The magnetization components for the other nucleus of the 
system, nucleus X, are given by 

                            ( )11 22 33 44
2

zX oXM M d d d d
q

= − + − −  (B21) 

                            ( 13 24
4 * *TX oXM M d d
q

= − + )  (B22) 

 

 This is equivalent to calculating the trace (sum of diagonal 
elements) of the product I D×  : 
                                      (nm mn

n m
)I d Tr I D= ×∑∑  (B23) 

 
The density matrix at thermal equilibrium 
 
 At equilibrium the nondiagonal elements are null because of the 
random phase distribution of the complex coefficients cm. We denote 
with fm the phase of the complex  quantity cm: 
                                          exp( )m m mc c iφ=  (B24) 
A nondiagonal matrix element is 
 

                            [ ]* exp ( )mn m n m n m nd c c c c i φ φ= = ⋅ −  (B25) 
 

The phase difference fm − fn can have any value within 0 and 2p with 
equal probability.  The complex number exp[i(fm − fn)], described as 
a vector in the complex plane, may be oriented in any direction. The 
average of a multitude of such vectors is null. 
 The diagonal elements are not null since fm − fm= 0. 
 

                                           2*
mm m m md c c c= =  (B26) 

 

In quantum mechanics  2
mc   is the probablity of finding the system 

in the state m ; therefore dmm = Pm is the population of this state. The 
density matrix at equilibrium is 
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1

2

0 . . 0
0 . . 0
. . . . .                          (B27)
. . . . .
0 0 . . N

P
P

D

P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
where    (normalized populations). Pn =Â 1
 
Evolution of the density matrix between pulses 
 
 In the absence of the r.f. excitation the Hamiltonian H accepts 
the kets n  as eigenfunctions: 
 
                                               nn E n=H  (B28) 
 
and the Schrödinger equation 

                                            
i t

∂ϕ ϕ
∂

−
⋅ =H  

becomes: 

                                 
d
d

n
n n

c
n c E

i t
−

⋅ =∑ ∑ n  (B29) 

 
Rearranging (B29) gives 

                                 
d

0
d

n
n n

c
c E n

i t
⎡ ⎤⎛ ⎞+ ⋅ ⋅ =⎢⎜ ⎟
⎝ ⎠⎣ ⎦

∑ ⎥  (B30) 

 
Due to the orthogonality of the eigenfunctions, (B30) is satisfied only 
if each term of the sum is null: 

                                           
d

0
d

n
n n

c
c E

i t
+ ⋅ =  (B31) 

Hence 

                                              
d1
d

n

n

c iE
c t

n−
⋅ =  (B32) 

or 
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                                             ( )d ln
d

n
n

iE
c

t
−

=  (B33) 

 
Integrating (B33) yields: 

                                            ln n
n

iE
c t C= − +  (B34) 

                                     exp exp( )n
n

iE
c t

−⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

C

C

 (B35) 

 
The integration constant C may be related to the value of cn at time 

.  This gives  0t = (0) exp( )nc =   and (B35) becomes 

                                      (0) exp n
n n

iE
c c t

−⎛ ⎞= ⋅ ⎜
⎝ ⎠

⎟  (B36) 

 
Knowing the evolution of all cn coefficients will allow us to predict 
the time variation of the density matrix, hence that of the 
magnetization: 

                 
( )* *(0) (0) exp m n

mn m n m n

i E E
d c c c c t

− −⎛ ⎞
= = ⋅ ⋅ ⎜ ⎟

⎝ ⎠
 

 

                                       (0) exp( )mn mnd i tω= ⋅ −  (B37)  
 

We have demonstrated here the relation (I.13) used in the density 
matrix treatment to describe the evolution between pulses.  The popu-
lations are invariable because  Em − Em= 0  (relaxation processes are 
neglected throughout this book). 
 
Effects of radiofrequency pulses 
 
 We have to find the time evolution of the density matrix under a 
given Hamiltonian, as we did in the previous section, but there are two 
things that make the problem more complicated.  
 First, the Hamiltonian is now time-dependent (radiofrequency 
magnetic field).  This problem can be circumvented by describing the 
evolution of the system in a rotating frame, in which the rotating 
magnetic field appears as an immobile vector B1, while the main 
magnetic field Bo is replaced by  
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o trB B ω γ∆ = −  
 

The resultant of B1 and DB is the effective field Beff (Figure B.1). 
 The field B1  is usually much larger than DB and the effective 
field practically is B1.  The Hamiltonian in the rotating frame is then 
 

                                               1 xB Iγ=H  (B38)  
 

as we have assumed that B1 is applied along the x axis of the rotating 
frame.  For comparison, in the absence of the r.f. field, the Hamilto-
nian in the rotating frame is 
                                              zBIγ= ∆H  (B39)  
 

while in the laboratory frame it has the expression 
 

                                              o zB Iγ=H  (B40) 
 
 

                            x

y

z

|

B1

Beff

D B =Bo - w / | gtr

 
 

 
Figure B.1.  The effective magnetic field Beff in the rotating frame. 
Ox, Oy = axes of the rotating frame ; wtr = angular frequency of r.f. 
transmitter (angular velocity of the rotating frame)  
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 Now we come to the second difficulty which prevents us from 
using the same approach as in the previous section:  the new Hamilto-
nian (B38) does not have the kets n  as eigenfunctions because we 
have passed from B0 to B1.  We have to use a more general equation 
which describes the evolution of D under any Hamiltonian: 
 

                                         
d (
d
D i D
t
= −H H )D  (B41) 

 
the demonstration of which is given separately in the following 
section.  The solution of (B41) is: 
 
                       ( ) ( )( ) exp / (0)exp /D t i t D i t= − H H  (B42) 
 

This can be verified by calculating the time derivative of (B42): 

( ) (d d exp / (0)exp /
d d
D i t D i t
t t

⎡ ⎤= −⎢ ⎥⎣ ⎦
H H )  

( ) ( )d (0)exp / exp /
d

Di t i t
t

⎡ ⎤+ − ⎢ ⎥⎣ ⎦
H H  

( ) ( )dexp / (0) exp /
d

i t D i t
t

⎡ ⎤+ − ⎢ ⎥⎣ ⎦
H H  

( ) ( )exp / (0)exp / 0i i t D i t−
= −

H H H +  

( ) ( )exp / (0) exp /ii t D i t+ −
HH H  

 

( ) ( ) ( )/ / /i D D i i D= − + = −H H H DH  
 
In the particular case of a strong r.f. field B1 applied along the x axis 
of the rotating frame we have, according to (B38): 
 

                                       1/ x xi t i B I t i Iγ α= =H  (B43)    

where 1B tα γ=   is the rotation angle of the magnetization around 
B1 in the time t (pulse duration).  Relation (B42) becomes  

( ) ( )exp (0)expx xD iI D iIα α= − −  
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                                            1 (0)R D R−=  (B44) 
 

where R is the  rotation operator [cf (A6)-(A7)]; D(0) and D denote 
the density matrix before and after the pulse.  We have thus 
demonstrated the relation (I.8). 
 In order to get an explicit matrix expression for R we have to 
calculate 
                                            exp( )x xR i Iα α=  (B45) 
 

using a series expansion of the exponential [see(A11)], 

                     
2 2 3 3( ) ( )

1 .
2! 3!

x x
x x

i I i I
R i Iα

α α
α= + + + + . .  (B46) 

The powers of Ix may easily be calculated if one notices that 

                                      [ ]2 1
4xI ⎛ ⎞= ⋅⎜ ⎟

⎝ ⎠
1  (B47) 

                                             
0 11
1 02xI ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

[ ]2 1 01 1
0 14 4xI ⎡ ⎤ ⎛ ⎞= = ⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

1   

                           3 0 11 1 1 2
1 04 8 8x x xI I I⎡ ⎤ ⎛ ⎞= = = ⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

 

[ ]4 1 01 1
0 116 16xI ⎡ ⎤ ⎛ ⎞= = ⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

1  

In general, for n = even we have: 

                                               [ ]1 01 1
0 12 2

n
x n nI ⎡ ⎤ ⎛ ⎞= = ⋅⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

1  (B48) 

and for n = odd 

                                         
0 11 1 2
1 02 2

n
x n n xI I⎡ ⎤ ⎛ ⎞= = ⋅⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

 (B49) 

 
By using (C12) and (C14) one can verify that (B48) and (B49) are 
also true for IxA and IxX in a two spin system with I=1/2. 
 Introducing (B48) and (B49) in (B46) and separating the even 
and odd terms gives: 
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2 4 1 0( / 2) ( / 2)1 . . .

0 12! 4!xRα
α α⎡ ⎤ ⎡ ⎤

= − + − ×⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 

                        
3 5 0 1( / 2) ( / 2)/ 2 . . .

1 03! 5!
i α αα
⎡ ⎤ ⎡ ⎤

+ − + − ×⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 (B50) 

 
Recognizing the sine (A12) and cosine (A13) series expansions we 
can write 

[ ] ( )
1 0 0 1

cos sin cos sin 2
0 1 1 02 2 2 2x xR i iα

α α α α⎡ ⎤ ⎡ ⎤
= ⋅ + ⋅ = ⋅ + ⋅⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
1 I

 

     
cos 0 0 sin

2 2
⎤
⎥

0 cos sin 0
2 2

i

i

α α

α α

⎡ ⎤ ⎡
⎢ ⎥ ⎢

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= +
cos sin

2 2

sin cos
2 2

i

i

α α

α α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(B51) 

 
For nucleus A in an AX system the rotation operator is 

                   

cos sin 0 0
2 2

sin cos 0 0
2 2

0 0 cos sin
2

0 0 sin cos
2 2

x

i

i
R

i

i

α

α α

α α

2
α α

α α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 (B52) 

 
If the pulse is applied along the y axis, relations similar to (B48), 
(B49) apply: 

                         
[ ]1 for  n=even

2
n
y nI ⎛ ⎞= ⋅⎜ ⎟

⎝ ⎠
1

 (B53) 

                         

1 (2 ) for  n=odd
2

n
y ynI I⎛ ⎞= ⋅⎜ ⎟

⎝ ⎠
 

 

and we obtain 
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                    exp( ) cos [ ] sin (2 )
2 2y y yR i I i Iα
α αα= = ⋅ + ⋅1  (B54) 

 

 Appendix C contains angular momentum components and 
rotation operators in matricial form, for a variety of spin systems and 
pulses.  The reader may check some of those results by making         a 
= 90o  or  a = 180o  in the relations above. 
 If the radiofrequency field B1 is applied along the − x axis, it has 
the same effect as a pulse along the +x axis, only the sense of rotation 
is reversed (left hand instead of right hand rule).  The result of such a 
pulse is therefore a rotation by − a around Ox : 

     ( ) ( ) exp( ) cos [ ] sin (2 )
2 2x x x xR R i I iα α Iα αα− −= = − = ⋅ − ⋅1  (B55) 

 
 It is possible to extend the DM treatment to  pulses with any 
phase (not only the four cardinal phases x, y, − x, − y) and/or off 
resonance pulses (Beff does not coincide with B1).  We will not discuss 
them here because, as shown in the second part of the book, it is more 
convenient to handle them by means of the Product Operator 
formalism (see Appendix M). 
  
Demonstratiom of (B41) 
 
In order to demonstrate that 

                                        
d ( )
d
D i D D
t
= −H H  

 
we follow the procedure used by Slichter (see Suggested Readings).  
We start with the (time dependent) Schrödinger equation 

                                            
i t

∂ϕ ϕ
∂

−
⋅ =H  

where 

                                              
1

N

n
n

c nϕ
=

= ∑  

 
with the observation that n  are not assumed to be eigenfunctions of 
H.  Combining the last two equations gives 
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1 1

d
d

N N
n

n
n n

c
n c

i t= =

−
⋅ =∑ ∑ H n  (B56) 

 
If we premultiply this equation with the bra m  we get 

                        
1 1

d
d

N N
n

n
n n

c
m n c m n

i t= =

−
=∑ ∑ H  (B57) 

 

The choice of normalized and orthogonal functions for the basis set 
n  implies  

                               0 form n m n= ≠  

                               1 form n m n= =  (B58) 
 

On the other hand m H n  is the matrix element Hmn in the matrix 
representation of the Hamiltonian, so (B57) becomes 

                                              
1

d
d

N
n

n mn
n

c
c H

i t =

−
= ∑  (B59) 

 

If we consider now the product 
 

                                                 *
jk j kp c c=  (B60) 

 

its time derivative will be 
*

*d d d
d d d

jk j k
k j

p c c
c c

t t
= +

t
 

*
*d d

d d
j k

k j

c c
c c

t t
⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 

*
*

1 1

N N

n jn k j n kn
n n

i ic H c c c H
= =

⎡ ⎤− −⎛ ⎞ ⎛= + ⎞
⎢ ⎥⎜ ⎟ ⎜

⎝ ⎠ ⎝
⎟
⎠⎣ ⎦

∑ ∑  

* * *

1 1

N N

j n kn n k jn
n n

i c c H c c H
= =

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑ ∑  

 
The change of sign comes from  ( − i)* = i. 
 
If we take into account that H is Hermitian (H*

kn = Hnk) we get 
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1 1

d
d

N N
jk

jn nk jn nk
n n

p i p H H p
t = =

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑ ∑  (B61) 

 
 

 The density matrix element djk is nothing other than the product 
pjk averaged over the whole ensemble: 
 

                                                  d pjk jk=  
 

On the other hand the Hamiltonian and its matrix elements are the 
same for all the systems within the ensemble, they are not affected by 
the operation of averaging.  Taking the average on both sides of (B61) 
yields 

                              
1 1

d
d

N N
jk

jn nk jn nk
n n

d i d H H d
t = =

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑ ∑  (B62) 

 
According to the matrix multiplication rule (see Appendix A) the 
sums in (B62) represent matrix elements of the products DH and HD, 
so (B62) can be written as  

( ) ( ) ( )d
d jk jk jk

jk

D i iD D D
t

⎛ ⎞ ⎡ ⎤= − = −⎜ ⎟ ⎣ ⎦⎝ ⎠
H H H H D  

 
This demonstrates (B41) since the time derivative of a matrix is 
performed by taking the derivative of each element. 
 
 


