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APPENDIX E:  DEMONSTRATION  
OF THE ROTATION RULES 

 
 We demonstrate here the validity of the PO pulse rotations 
derived from the vector representation in Section II.6 (correspondence 
between the vector rotations and the PO formalism). 
 
Demonstration of an αx rotation 
 
 We will demonstrate an α rotation around the x-axis: 
                                   cos sinx

y y zI I Iα α α⎯⎯→ +  (E1) 
Other rotations can be demonstrated in a similar way.  We start from 
the rotation operator applied to a density matrix and we make use of 
the commutation rules for the operators Ix, Iy, Iz, which are: 
 

                                           x y y x zI I I I iI− =  

                                           y z z y xI I I I iI− =  (E2) 

                                           z x x z yI I I I iI− =  
 

 It is necessary to emphasize that the above rules apply not only 
to an isolated spin but also to every particular nucleus in a multi-
nuclear system (with or without coupling).  In an AMX system for 
instance we have for nucleus A: 
 

                                      xA yA yA xA zAI I I I iI− =        (and so on) 
 

 Angular momentum components of different nuclei within a 
system are commutative.  For instance: 

                                      
0

0
xA yM yM xA

xA xM xM xA

I I I I

I I I I

− =

− =
 (E3) 

 

The rotation operator Rαx [see(B45)] has the expression: 
 

                                         exp( )x xR i Iα α=  (E4) 
 

Applied to a density matrix D(n) it will yield: 
                                   1( 1) ( )xD n R D n R xα α

−+ =  (E5) 
 In (E1) we have assumed that D(n)  is equal to Iy, so what we 
have to demonstrate is: 
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                      1( 1) cos sinx y x y xD n R I R I Iα α α α−+ = = +  (E6) 
 

In Appendix B we have demonstrated [see (B51)] that 

                         cos [ ] sin (2 )
2 2x xR iα Iα α

= ⋅ + ⋅1  (E7) 
 

Introducing this expression in (E6) gives 

( 1) cos [ ] sin (2 ) cos [ ] sin (2 )
2 2 2 2x y xD n i I I i Iα α α α⎡ ⎤ ⎡+ = ⋅ − ⋅ ⋅ + ⋅⎢ ⎥ ⎢⎣ ⎦ ⎣

1 1 ⎤
⎥⎦

               
2 2cos 4sin 2 cos 4sin ( )

2 2 2 2y x y x y x x yI I I I i I I I Iα α α α
= ⋅ + ⋅ + −  

 

After using the first relation in (E2) this becomes 
2 2( 1) cos 4sin 2 cos 4sin ( )

2 2 2 2y x y xD n I I I I i iI z
α α α α

+ = ⋅ + ⋅ + −  

                 2 2cos 4sin sin
2 2y x y x zI I I I Iα α α= ⋅ + ⋅ + ⋅  

 

If we use now the relation 

                                             
1
4x y x yI I I I= −

 (E8) 
which will be demonstrated immediately, we get 
                              ( 1) cos siny zD n I Iα α+ = ⋅ + ⋅  
which confirms (E1). 
 To demonstrate (E8) we postmultiply the first relation in (E2) 
by xI  and, taking (B48) into account, we obtain 

                                       
1
4x y x y z xI I I I iI I− =

 (E9) 
 

Premultiplying of the first relation in (E1) by Ix yields 

                                           
1
4 y x y x x zI I I I iI I− =  (E10) 

Subtracting (E10) from (E9) gives 

                       
12 ( ) (
2x y x y z x x z y y)I I I I i I I I I i iI I− = − = = −  

or 
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12
2x y x yI I I I= −

 
which demonstrates (E8). 
 
Rotation operators applied to product operators 
 
 Suppose we have to apply the rotation operator the RαxA to the 
product operator [yzy].  The latter is a shorthand notation for the 
product. 
 

                                   (2 )(2 )(2 )yA zM yXI I I  
 

The subscripts A, M, X refer to the different nuclei in the system. 
Since these subscripts are omitted for simplicity in the product 
operator label [yzy], we have to keep in mind as a convention that the 
different nuclei of the system appear in the product operators always 
in the same order: A, M, X. 
 What we have to calculate is: 
                 ( 1) exp( ) 8 exp( )xA yA zM yX xAD n i I I I I i Iα α+ = − ⋅  (E11) 
 

We have stated (E3) that IxA commutes with both IzM and IyX.  This 
enables us to rewrite (E11) as: 
 

                 ( 1) exp( ) exp( )8xA yA xA zM yXD n i I I i I I Iα α+ = − ⋅  
 

and we have reduced the problem to a known one.  Using (E6) we get:  
 

                   ( 1) 8(cos sin )yA zA zM yXD n I I I Iα α+ = ⋅ + ⋅  
 

In shorthand notation: 
 

                        [ ] [ ]cos [ }sinxAyzy yzy zzyα α α⎯⎯⎯→ +  (E12) 
 

 This can be phrased as follows:  A rotation operator affects only 
one factor in the product operator and leaves the others unchanged.  
The affected factor parallels the vector rotation rules. 
 This is true in the case of a selective pulse.  We have sometimes 
to handle nonselective pulses, affecting two or more nuclei in the 
system.  In such cases, the procedure to follow is to substitute (in the 
calculations, not in the hardware) the nonselective pulse by a sequence 
of selective pulses following immediately one after another. 
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The problem 
                                                                     [ ]  xMXyzy α⎯⎯⎯→
has to be handled as  
 

                                                                     [ ] [ ]cos [ ]sinxMyzy yzy yyyα α α⎯⎯⎯→ −  
                                       2[ ]cos [ ]cos sinxX yzy yzzα α α α⎯⎯⎯→ +  

                                                               
2[ ]sin cos [ ]sinyyy yyzα α− − α

]

 (E13) 
 
The reader can easily check that the order in which αxM and αxX are 
applied is immaterial.  The procedure described above has to be 
followed even if the spins affected by the pulse are magnetically 
equivalent. 
 The result (E13) may seem unexpectedly complicated for one 
single pulse.  Fortunately, in most practical cases α is either 90o or 
180o.  In these cases, the procedure above leads to exhilariatingly 
simple results like: 
                                       90[ ] [ ]xMXyzy yyz⎯⎯⎯→−
                                       180[ ] [ ]xMXyzy yzy⎯⎯⎯⎯→
                                      90[ ] [xAMxyz xzz⎯⎯⎯→  
 
In these cases it is not necessary to split the non-selective pulse into 
subsequent selective pulses.  


