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APPENDIX F:  DEMONSTRATION OF THE  
COUPLED EVOLUTION RULES 

 
 Before going into the demonstration we need to point out two 
limitations: 
 

      a. It assumes I=1/2 for all nuclei in the system 
      b. It operates in the weak coupling case: 
          J (coupling constant)<< ∆δ  (chemical shift difference) 
 

 Between r.f. pulses the evolution of a two-spin system AX in 
the rotating frame is governed by the Hamiltonian. 
                          ( )2A zA X zX zA zXI I JI Iπ= Ω +Ω +H  (F1) 
The density matrix D(n+1) at the end of the evolution is related to the 
initial matrix D(n) as:  
 

                    (F2) ( 1) exp( / ) ( ) exp( / )D n i t D n i t+ = − ⋅ ⋅H H
 

Since all terms in (F1) commute with each other, we can write the 
evolution operator as: 

 

( ) ( ) ( ) ( )exp / exp exp exp 2A zA X zX zA zXi t i tI i tI i JtI Iπ= Ω ΩH  

                            A X JR R R=  
 

where the order of the factors is immaterial.  Relation (F2) can be 
rewritten as: 
                          1 1 1( 1) ( )J X A A X JD n R R R D n R R R− − −+ = ⋅ ⋅  (F3) 
 

In (F3) the actual coupled evolution is formally presented as the result 
of three independent evolutions due to shift A, shift X, and coupling J, 
respectively.  In fact this is the way the coupled evolutions are 
handled in the PO formalism:  as a succession of shift evolutions and 
evolutions due to spin-spin coupling (coupling evolutions). 
 The  shift evolutions (noncoupled evolutions) are actually z- 
rotations and are easily handled with the vector rotation rules. 
Example: 
       [ ] [ ]cos [ ]sinA t

A Axy xy t yyΩ⎯⎯⎯→ Ω + tΩ

X

 

[ ]cos cos [ ]cos sinX t
A X Axy t t xx tΩ⎯⎯⎯→ Ω Ω − Ω Ω t

X

 
                          [ ]sin cos [ ]sin sinA X Ayy t t yx t t+ Ω Ω − Ω Ω
Or, with self-explanatory notations, 
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      [ ] '[ ] '[ ] '[ ] '[ ]A Xt txy cc xy cs xx sc yyΩ Ω⎯⎯⎯→⎯⎯⎯→ − + − ss yx  (F4) 
 

The object of this appendix is to derive the rules for calculating 
 

1( 1) ( )J JD n R D n R−+ =  
where 
                                        ( )exp 2J zA zXR i JtI Iπ=  (F5) 
 

and  D(n)  may be any of the product operators or a combination 
thereof. 
 We have to find first an expression similar to (B51) for the 
operator RJ.  Calculating the powers of  IzAIzX  we find 

                             ( ) 1 [ ]
4

n
zA zX nI I = 1               for n = even (F6) 

                             ( ) 1 4
4

n
zA zX zA zXnI I I= I         for n = odd (F7) 

 

and this leads to 

                             (cos [ ] sin 4
2 2

)J zA zX
Jt JtR i I Iπ π

= + ⋅1  (F8) 

an expression we can use in calculating  1( 1) ( )J JD n R D n R−+ = . 
 It is now the moment to introduce specific product operators for 
D(n).  We have to discuss three cases. 
 
 Case 1.  Both nuclei A and X participate in the product operator 
with z or 1.  Example: 
                                   ( )( )( ) [ ] 2 2zA zXD n zz I I= =  
 

In this case D(n) commutes with both IzA and IzX and this gives: 
 

                      1 1( 1) ( ) ( ) (J J J JD n R D n R D n R R D n− −+ = = = )
 

 None of the POs [zz], [z1], [1z], [11] is affected by the coupling 
evolution.  As a matter of fact, all these POs have only diagonal 
elements and are not affected by any evolution, shift or coupling. 
 Case 2. Both nuclei A and X participate in the product operator 
with an x or a y.  Example: 
                                  ( )( )( ) [ ] 2 2xA yXD n xy I I= =  
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We can demonstrate that this kind of product operator also is not 
affected by the coupling evolution.  In order to do so we have to take 
into account that, for I = 1/2, the components of the angular momen-
tum ar anticommutative: 
                                               x y y xI I I I= −  

                                               y z z yI I I I= −  (F9) 

                                               z x x zI I I I= −  
 
The validity of (F9) can be verified on the expressions (C1, C2) of the 
angular momentum components for I=1/2.  Using (F8) to calculate 

 we have ( 1D n + )

( )( 1) cos [ ] sin 4 (4
2 2 zA zX xA yX
Jt JtD n i I I I Iπ π⎡ ⎤+ = − ⋅ ×⎢ ⎥⎣ ⎦

1 )  

( )cos [ ] sin 4
2 2 zA zX
J Ji I Iπ π⎡ ⎤× + ⋅⎢ ⎥⎣ ⎦

1  

( ) ( )2 2 3cos 4 sin 4
2 2xA yX zA zX xA yX zA zX
Jt JtI I I I I I I Iπ π

= +  

( )( )2cos sin 4
2 2 xA yX zA zX zA zX xA yX
Jt Jti I I I I I I I Iπ π

+ −  

Since the angular momentum components of A are commutative with 
those of X [see(E3)], we can rewrite the last result as 

( ) ( )2 2 3( 1) cos 4 sin 4
2 2xA yX zA xA zA zX yX zX
Jt JtD n I I I I I I I Iπ π

+ = +  

                   ( )( )2cos sin 4
2 2 xA zA yX zX zA xA zX yX
Jt Jti I I I I I I I Iπ π

+ − (F10) 
 

Using (F9) we find out that the last parenthesis in (F10) is null.  To 
calculate the product  IzAIxAIzAIzXIyXIzX  in (F10) we use the following 
relations, similar to (E8) : 
             ( ) / 4 ; ( ) / 4zA xA zA xA zX yX zX yXI I I I I I I I= − = −
 

and we reduce (F10) to 

( ) ( ) ( )2 2( 1) cos 4 sin 4 4 (
2 2xA yX xA yX xA yX
Jt JtD n I I I I I I D n)π π

+ = + = =
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All POs in the subset [xx],[yx],[xy],[yy] are  not affected by the J evo-
lution.  Unlike the POs in Case 1, they are affected by the shift evo-
lution (see F4).  This is consistent with the fact that all the non-
vanishing elements of these POs are double-quantum or zero-quantum 
coherences.  The transition frequencies corresponding to these matrix 
elements do not contain the coupling J. 
 
 Case 3. The product operator exhibits z or 1 for one of the 
nuclei and x or y for the other nucleus.  Only this kind of product 
operator is affected by the coupling.  Example: 
 

                              ( ) [ 1] 2 xAD n x I= =  
 

Calculations similar to those performed in Case 2 lead to: 

( ) (( 1) cos [ ] sin 4 2
2 2 zA zX xA
Jt JtD n i I I Iπ π⎡ ⎤+ = − ⋅ ×⎢ ⎥⎣ ⎦

1 )  

( )cos [ ] sin 4
2 2 zA zX
Jt Jti I Iπ π⎡ ⎤× + ⋅⎢ ⎥⎣ ⎦

1  

( ) ( )2 2cos 2 sin 32
2 2xA zA zX xA zA zX
Jt JtI I I I I Iπ π

= +  

( )cos sin 8 8
2 2 xA zA zX zA zX xA
Jt Jti I I I I I Iπ π

+ −  

( ) ( )2 2cos 2 sin 32
2 2xA zA xA zA zX
Jt Jt 2I I I I Iπ π

= +  

( )cos sin 8 8
2 2 xA zA zX zA xA zX
Jt Jti I I I I I Iπ π

+ −  

( ) ( )2 2cos 2 sin 2
2 2xA xA
Jt JtI Iπ π

= −  

( )cos sin 8
2 2 xA zA zA xA zX
Jt Jti I I I I ( )Iπ π

+ −  

( ) ( )2 2cos 2 sin 2
2 2xA xA
Jt JtI Iπ π

= −  

( )( )cos sin 8
2 2 yA zX
Jt Jti iI Iπ π

+ −  

cos (2 ) sin (4 )xA yA zXJt I Jt I Iπ π= +  

cos [ 1] sin [ ]Jt x Jt yzπ π= +  
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We have demonstrated that 
 

[ 1] [ 1]cos [ ]sinJ couplx x Jt yz Jtπ π⎯⎯⎯→ +  
 

 After doing similar calculations for all the POs in this category 
(i.e., [x1],[1x],[y1],[1y],[xz],[zx],[yz],[zy]), we can summarize the 
following rules for the evolution due to the coupling J : AX

 a. The coupling evolution operator RJ affects only those product 
operators in which one of the nuclei A,X is represented by x or y while 
the other is represented by 1 or z. 
 b. The effect of the J evolution is a rotation of x (or y) in the 
equatorial plane by πJt, while z is replaced by 1 and 1 by z in the new 
term.  The format is:  
 PO after J evolution = cosπJt (former PO) + sinπJt (former PO 
in which x is replaced by y,  y by -x,  z by 1 and 1 by z).  In systems 
with more than two nuclei, every nonvanishing coupling like JAM, JAX, 
JMX, etc.,  has to be taken into account separately (the order is 
immaterial). 
 Note 1.  From Appendices E and F it results that any rotation  
(r.f. pulse) or coupled evolution turns a given PO into a linear 
combination of POs within the basis set.  In other words, if the density 
matrix can be expressed in terms of POs at the start of a sequence we 
will be able to express it as a combination of POs at any point of the 
sequence.  This confirms that the PO basis set is a complete set. 
 Note 2.  Moreover, in a coupled evolution, any x or y in the 
product operator can only become an x or y.  Any z or 1 can only 
become a z or 1. This  leads to a  natural  separation of  the  basis set 
(N2 product operators) into N subsets of N operators each.  
 In the case of N = 4 (two nuclei) the four subsets are: 
 
                                    1)  [11], [1z], [z1], [zz] 
 
                                    2)  [x1], [y1], [xz], [yz] 
 
                                    3)  [1x], [zx], [1y], [zy] 
 
                                    4)  [xx], [yx], [xy], [yy]  
 
 In the case of N = 8 (three nuclei) the eight subsets are: 
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              1)  [111], [z11], [1z1], [zz1], [11z], [z1z], [1zz], [zzz] 
 
              2)  [x11], [y11], [xz1], [yz1], [x1z], [y1z], [xzz], [yzz] 
 
              3)  [1x1], [zx1], [1y1], [zy1], [1xz], [zxz], [1yz], [zyz] 
 
              4)  [xx1], [yx1], [xy1], [yy1], [xxz], [yxz], [xyz], [yyz] 
 
              5)  [11x], [z1x], [1zx], [zzx], [11y], [z1y], [1zy], [zzy] 
 
              6)  [x1x], [y1x], [xzx], [yzx], [x1y], [y1y], [xzy], [yzy] 
 
              7)  [1xx], [zxx], [1yx], [zyx], [1xy], [zxy], [1yy], [zyy] 
 
              8)  [xxx], [yxx], [xyx], [yyx], [xxy], [yxy], [xyy], [yyy]  
 
 Under a coupled evolution, the descendents of a PO are to be 
found only within its own subset. 
 


