APPENDIX G: PO EVOLUTION TABLES

The tables below summarize the effect of a coupled evolution on each of the sixteen POs of an AX system (two spin 1/2 nuclei). The first column in each table indicates the PO before the evolution, while the next columns indicate the newly created POs (including the initial one). A coupled evolution implies three PO operations: shift A, shift X, coupling J. Nevertheles no more than four terms are generated from the initial one: when both shifts are active the coupling is not.

a. First subset (not affected by evolution)

Initial PO	Final POs			
[11]	[11]	0	0	0
[z1]	0	[z1]	0	0
[1z]	0	0	[1z]	0
[zz]	0	0	0	[zz]

b. Second subset (affected by A shift and J coupling)

Initial PO	Final POs			
[x1]	<i>cC</i> [<i>x</i> 1]	<i>sC</i> [<i>y</i> 1]	-sS[xz]	cS[yz]
[y1]	-sC[x1]	cC[y1]	-cS[xz]	-sS[yz]
[xz]	-sS[x1]	<i>cS</i> [<i>y</i> 1]	cC[xz]	sC[yz]
[yz]	-cS[x1]	-sS[y1]	-sC[xz]	cC[yz]

c. Third subset (affected by X shift and J coupling)

170 Appendix G

Initial PO	Final POs			
[1x]	c'C[1x]	-s'S[zx]	s'C[1y]	<i>c</i> ' <i>S</i> [<i>zy</i>]
[zx]	-s'S[1x]	c'C[zx]	c'S[1y]	s'C[zy]
[1y]	-s'C[1x]	-c'S[zx]	c'C[1y]	-s'S[zy]
[zy]	-c'S[1x]	-s'C[zx]	-s'S[1y]	<i>c</i> ' <i>C</i> [<i>zy</i>]

d. Fourth subset (affected by A shift and *X* shift)

Initial PO	Final POs			
[xx]	cc'[xx]	<i>sc</i> '[<i>yx</i>]	cs'[xy]	ss'[yy]
[yx]	-sc'[xx]	<i>cc</i> '[<i>yx</i>]	-ss'[xy]	cs'[yy]
[xy]	-cs'[xx]	-ss'[yx]	<i>cc</i> '[<i>xy</i>]	sc'[yy]
[yy]	ss'[xx]	-cs'[yx]	-sc'[xy]	<i>cc</i> '[<i>yy</i>]

 $c = \cos \Omega_A t$; $c' = \cos \Omega_X t$; $C = \cos \pi J t$ $s = \sin \Omega_A t$; $s' = \sin \Omega_X t$; $S = \sin \pi J t$