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Evolution during ∆1 yields: 
 
                                           d d  i13 13 13 15 4( ) ( ) exp( )= - W D
                            = - - - +2 1i i t i JH e Hexp( ) exp[ ( ) ]W W Dp  (I.27) 
                            = - - + -2 1 1i i t i JH eexp[ ( )]exp( )W D Dp  
  
                 d i i t i JH e24 1 15 2( ) exp[ ( )]exp( )= - - + +W D Dp  (I.28) 
 
To achieve our goal we choose ∆1=1/2J, which implies pJ∆1=p/2.  
 
Using the expression [see (A16)] 
 
                   exp( / ) cos( / ) sin( / )± = ± =i i ±ip p p2 2 2  
 
                                        exp( )- =i -J ip D1  
  (I.29) 
                                        exp( )+ =i +J ip D1  
 
We now have  
 
                              d i tH e13 15 2( ) exp[ ( )]= - - +W D    
  (I.30) 
                              d i tH e24 15 2( ) exp[ ( )]= + - +W D  
 
For the following calculations it is convenient to use the notations  
 
                                      c tH e= +cos[ ( )]W D1  
  (I.31) 
                                      s tH e= +sin[ ( )]W D1  
 
which lead to 
 
                                       d c  is

is

13 5 2( ) ( )= - -
  (I.32) 
                                       d c  24 5 2( ) ( )= + -
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At this point the density matrix is: 

      (I.33) 

3 0 2( ) 0
0 2 0 2(

(5)
2( ) 0 3 0

0 2( ) 0 2

c is
c is

D
c is

c is

− − 
 − =
 − +
 + 

)

 
 
3.8  Third and Fourth Pulses 
 
 Although physically these pulses are applied separately, we 
may save some calculation effort by treating them as a single 
nonselective pulse.  
 The expressions of R90xC and R90xH are taken from Appendix C. 
 

R R RxCH xC xH90 90 90=  
 

1 0 0 1 0
1 0 0 0 1 01 1

0 0 1 0 1 02 2
0 0 1 0 0 1

i i
i i

i i
i i

   
   
   =
   
   
   

0

 

 
1 1

1 11
1 12                      (I.34)

1 1

i i
i i
i i

i i

− 
 − =
 −
 − 

 

 
The reciprocal of (I.34) is: 
 

                            

1
90

1 1
1 11
1 12

1 1

xCH

i i
i i

R
i i

i i

−

− − − 
 − − − =
 − − −
 − − − 
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D R xCH( )5 90◊  
3 2 ( ) 3 2( ) 3 2( ) 3 2 (
2 2( ) 2 2 ( ) 2 2 ( ) 2 2( )1
3 2( ) 3 2 ( ) 3 2 ( ) 3 2( )2
2 2 ( ) 2 2( ) 2 2( ) 2 2 ( )

i c is i c is i c is i c is
i c is i c is i c is i c is
i c is i c is i c is i c is

i c is i c is i c is i c is

− − + − − − − − − 
 − − + − − + − + − =
 − + − − + − + + +
 − + + + + − + + + 

)

 
Premultiplying the last result by R  gives xCH90

1-

            

5 4 0 4
4 5 4 01(7)

0 4 5 42                   (I.35)
4 0 4 5

i is ic
i is ic

D
ic i is

ic i is

− − 
 − + =
 − +
 − − 

 
 
Comparing D(7) with D(5) we make two distinct observations.  First, 
as expected, carbon coherences are created in d12 and d34 due to the 
90xC pulse.  Second, the proton information [s = sinΩH(te + ∆1)] has 
been transferred from d13 and d24 into the carbon coherences d12 and 
d34, which are  

                                          
d i i

12
4

2
= - s

 

                                          
d i i

34
4

2
= + s

 
This is an important point of the sequence because now the mixed 
carbon and proton information can be carried into the final FID.  
 
3.9  The Role of  D2 
 
 As we will see soon, the observable signal is proportional to the 
sum d12 + d34.  If we started the decoupled acquisition right at t(7), the 
terms containing s would be cancelled.  To save them, we allow for 
one more short coupled evolution ∆2.  Since no r.f. pulse follows after 
t(7), we know that every matrix element will evolve in its own box 
according to (I.13).  It is therefore sufficient, from now on, to follow 
the evolution of the carbon coherences d12 and d34 which constitute the 
observables in this sequence. 
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According to (I.13), at t(8) coherences d12 and d34 become 
 
                        d i s i12 12 28 1 2 2( ) ( / ) exp( )= - - W D  (I.36) 
                        d i s i34 28 1 2 2

34
( ) ( / ) exp ( )= + - W D  (I.37) 

 
where Ω12 = w12 wtrC and Ω34 = w34 wtrC indicate that now we are 
in the carbon rotating frame, which is necessary to describe the carbon 
signal during the free induction decay. 

- -

 As shown in Figure I.1 the transition frequencies of carbon (nu-
cleus A) are: 

n n n

n n n

12

34

2 2

2 2

= + = +

= - = -

A C

A C

J J

J J
 

 
Since ω = 2πν, and we are in rotating coordinates we obtain: 
 
                                         W W12 = +C Jp  (I.38) 
                                         W W34 = -C Jp   (I.39) 
 
Hence, 
 
               d i s i i JC12 2 28 1 2 2( ) ( / ) exp( ) exp( )= - - -W D Dp  (I.40) 
               d i s i i JC34 2 28 1 2 2( ) ( / ) exp( ) exp( )= + - +W D Dp  (I.41) 
 
 Analyzing the role of ∆2 in (I.40 41) we see that for ∆2 = 0 
the terms in s which contain the proton information are lost when we 
calculate the sum of d12 and d34   As discussed previously for ∆1, here 
also, the desired signal is best obtained for ∆2 = 1/2J, which leads to 
exp(± ipJ∆2) = ± i and 

-

 
                        d s i C12 28 1 2 2( ) ( / ) exp( )= + - - W D  (I.42) 
                        d s i C34 28 1 2 2( ) ( / ) exp( )= - + - W D  (I.43) 
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3.10  Detection 
 
 From the time t(8), on the system is proton decoupled, i.e., both 
d12 and d34 evolve with the frequency ΩC: 
 
               d s i i tC C d12 29 1 2 2( ) ( / ) exp( ) exp( )= + - - -W D W  (I.44) 
               d s i i tC C d34 29 1 2 2( ) ( / ) exp( ) exp( )= - + - -W D W  (I.45) 
 
Our density matrix calculations, carried out for every step of the 
sequence, have brought us to the relations (I.44-45).  Now it is time to 
derive the observable (transverse) carbon magnetization components. 
This is done by using the relations (B19) and (B20) in Appendix B: 
 
                   (I.46) M M iM M p d dTC xC yC oC= + = - +( / )( * *4 12 34 )
 
The transverse magnetization MT is a complex quantity which com-
bines the x and y components of the magnetization vector.  We must 
now reintroduce the factor p/4 which we omitted, for convenience, 
starting with (I.7).  This allows us to rewrite (I.46) into a simpler 
form: 
                                 M M d dTC oC= - +( * *

12 34 )  (I.47) 
 
By inserting (I.44-45) into (I.47) we obtain 
 
                       M M s i iT tC oC C C d= 4 2exp( ) exp( )W D W  (I.48) 
 
With the explicit expression of  s  (I.31): 
 
         M M t i iT tC oC H e C C d= +4 1 2sin[ ( )]exp( ) exp( )W D W D W  (I.49) 
 
 Equation (I.49) represents the final result of our 2DHETCOR 
analysis by means of the density matrix formalism and it contains all 
the information we need. 
 We learn from (I.49) that the carbon magnetization rotates by 
ΩCtd while being amplitude modulated by the proton evolution ΩHte. 
Fourier transformation with respect to both time domains will yield 
the two-dimensional spectrum. 
 The signal is enhanced by a factor of four, representing the 
H/gC ratio.  The polarization transfer achieved in 2DHETCOR and g
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other heteronuclear pulse sequences cannot be explained by the 
vector representation. 
 When transforming with respect to td,  all factors other than 
exp(iΩCtd) are regarded as constant.  A single peak frequency,  ΩC, is 
obtained.  When transforming  with respect to te, all factors other than 
sin[ΩH(te + ∆1)] are regarded as constant.  Since 

                                          sina
a a

=
- -e e

i

i i

2
 (I.50) 

both +WH  and -WH  are obtained (Figure  I.3a). 
 

C C C

H

W

-W

H

H

0

W
C

(a)

H

WC

13W

24W

13-W

24-W

0

(b)

H

12W34W

13W

24W

13-W

24-W

0

(c)  
 
Figure I.3. Schematic 2D heteronuclear correlation spectra (contour 
plot): (a) fully decoupled, (b) proton decoupled during the acquisition, 
and (c) fully coupled.  Filled and open circles represent positive and 
negative peaks.  With the usually employed magnitude calculation 
(absolute value), all peaks are positive.  See experimental spectra in 
figures 3.11, 3.9 and 3.7 of the book by Martin and Zektzer (see 
Suggested Readings). 

 
 Imagine now that in the sequence shown in Figure I.2 we did 
not apply the 180o pulse on carbon and suppressed D1.  During the 
evolution time te the proton is coupled to carbon.  During the 
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acquisition,  the carbon is decoupled from proton.  The result (see 
Appendix I) is that along the carbon axis we see a single peak, while 
along the proton axis we see a doublet due to the proton-carbon 
coupling.  If we calculate the magnetization following the procedure 
shown before, we find: 
 
        M M t t i tTC oC e e C d= - - +2 13 13 2(cos cos ) exp[ ( )]W W W D  (I.51) 
 
Reasoning as for (I.49) we can explain the spectrum shown in Figure 
I.3b. 
 Finally, if we also suppress the decoupling during  the acquisi-
tion and the delay ∆2 we obtain (see Appendix I) 
 
        M iM t t i tTC oC e e d= - - +( / cos cos ) exp( )1 2 13 24 12W W W  
                   - + -iM t t i toC e e d( / cos cos ) exp( )1 2 13 24 34W W W  (I.52) 
 
which yields the spectrum shown in Figure I.3c. 
 The lower part of the spectra is not displayed by the instrument, 
but proper care must be taken to place the proton transmitter beyond 
the proton spectrum.  Such a requirement is not imposed on the carbon 
transmitter, provided quadrature phase detection is used. 
 The peaks in the lower part of the contour plot (negative proton 
frequencies) can also be eliminated if a more sophisticated pulse se-
quence is used, involving phase cycling. If such a pulse sequence is 
used, the proton transmitter can be positioned at mid-spectrum as well. 
An example of achieving quadrature detection in the domain te is 
given in Section 6 (COSY with phase cycling).  
 So far we have treated the AX (CH) system.  In reality, the pro-
ton may be coupled to one or several other protons.  In the sequence 
shown in Figure I.2 there is no proton-proton decoupling.  The 2D 
spectrum will therefore exhibit single resonances along the carbon 
axis, but multiplets corresponding to proton-proton coupling, along 
the proton axis.  An example is given in Figure I.4a which represents 
the  high  field  region  of  the  2DHECTOR  spectrum  of  a molecule  
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20     Density Matrix Treatment 

 
 
Figure I.4b.   Contour plot of the spectrum in Figure I.4a. 

 
 
formally derived from [4,2,2,02,5]deca-3,7,9-triene (Nenitzescu's 
hydrocarbon).  The delays D1 and D2 were set to 3.6 ms in order to optimize 
the signals due to 1J (@140 Hz).  It should be noted that the relation (I.49) 
has been derived with the assumption that  D1 = D2 = D = 1/2J.  For any other 
values of J the signal intensity is proportional to sin2pJD.  Thus, signals 
coming from long range couplings will have very small intensities.  Figure 
I.4b is a contour plot of the spectrum shown in Figure I.4a.  It shows in a 
more dramatic manner the advantage of 2D spectroscopy:  the carbon-proton 
correlation and the disentangling of the heavily overlapping proton signals. 
 
 


