
 
 
 
 
 
 
 
4     Density Matrix Treatment 

3.  THE DENSITY MATRIX DESCRIPTION OF 
A TWO-DIMENSIONAL HETERONUCLEAR 
CORRELATION SEQUENCE (2DHETCOR) 

 
 The purpose of 2DHETCOR is to reveal the pairwise correla-
tion of different nuclear species (e.g., C-H or C-F) in a molecule. This 
is based on the scalar coupling interaction between the two spins. 
 
3.1  Calculation Steps 
 
 Figure I.2 reveals that the density matrix treatment of a pulse 
sequence must include the following calculation steps: 
 
 - thermal equilibrium populations (off diagonal elements are   
                              zero) 
 - effects of rf pulses (rotation operators) 
 - evolution between pulses 
 - evolution during acquisition 
 - determination of observable magnetization. 
 
 Applying the sequence to an AX system (nucleus A is a 13C, 
nucleus X is a proton) we will describe in detail each of these steps. 
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Figure I.2.  The two-dimensional heteronuclear correlation sequence: 
90xH te /2 180xC te /2 ∆1 90xH 90xC ∆2 AT. - - - - - - - -
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3.2  Equilibrium Populations 
 
 At thermal equilibrium the four energy levels shown in Figure 
I.1 are populated according to the Boltzmann distribution law: 
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Taking the least populated level as reference we have: 
 
              2 1 1 2/ exp[( ) / ] exp[ ( / 2) / ]AP P E E kT h J kTν= − = +  (I.2) 
 
Since transition frequencies (108 Hz) are more than six orders of 
magnitude larger than coupling constants (tens or hundreds of Hz), we 
may neglect the latter (only when we calculate relative populations; of 
course, they will not be neglected when calculating transition frequen-
cies).  Furthermore, the ratios hνA/kT and hνX/kT are  much smaller 
than 1.  For instance, in a 4.7 Tesla magnet the 13C Larmor frequency 
is νΑ = 50 x 106 Hz and 
 

                 
34 6 1

5
23

6.6 10 Js 50 10 s 0.785 10
1.4 10 (J/K) 300K

Ahp
kT
ν − −

−
−

⋅ ⋅ ⋅
= = = ⋅

⋅ ⋅
 

 
 
This justifies a first order series expansion [see (A11)]: 
 
 
                    2 1/ exp( / ) 1 ( / ) 1A AP P h kT h kT pν ν= ≅ + = +  (I.3) 
 
                    3 1/ exp( / ) 1 ( / ) 1X XP P h kT h kT qν ν= ≅ + = +  (I.4) 
 
                    4 1/ 1 [ ( ) / ] 1A XP P h kT p qν ν≅ + + = + +  (I.5) 
 
 
In the particular case of the carbon-proton system the Larmor 
frequencies are in the ratio 1:4 (i.e., q = 4p).  
 
We now normalize the sum of populations: 
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                                             1 1P P=  
                                             2 1(1 )P p P= +  
                                             3 1(1 4 )P p P= +  
                                             4 1(1 5 )P p P= +  
                                             ____________________ 

  1 1 (I.6)1 (4 10 )P p PS= + =
 

 
Hence,                                  1 1/P S=  
                                             2 (1 ) /P p S= +  
                                             3 (1 4 ) /P p S= +  
                                             4 (1 5 ) /P p S= +  
 
where                                     4 10S p= +  
 
 Given the small value of p we can work with the approximation 
S@4.  Then the density matrix at equilibrium is: 
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 It is seen that the first term of the sum above is very large 
compared to the second term.  However, the first term is not important 
since it contains the unit matrix [see (A20)-(A21)] and is not affected 
by any evolution operator (see Appendix B).  Though much smaller, it 
is the second term which counts because it contains the population 
differences (Vive la difference!).  From now on we will work with this 
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term only, ignoring the constant factor p/4 and taking the license to 
continue to call it D(0): 

   

0 0 0 0
0 1 0 0

(0)
0 0 4 0                                   (I.7)
0 0 0 5

D

 
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 
 
 

 
Equilibrium density matrices for systems other than C-H can be built 
in exactly the same way. 
 
3.3  The First Pulse 
 
 At time t(0) a 90o proton pulse is applied along the x-axis. We 
now want to calculate D(1), the density matrix after the pulse.  The 
standard formula for this operation, 
 
                               D(1) = R-1 D(0) R, (I.8) 
 
is explained in Appendix B.  The rotation operator, R, for this 
particular case is [see (C18)]: 
 

  90

1 0 0
0 1 01                           (I.9)

0 1 02
0 0 1

xH

i
i

R
i

i

 
 
 =
 
 
 

 

where  i   is the imaginary unit. = -1
 Its inverse (reciprocal), R-1, is readily calculated by 
transposition and conjugation [see (A22)-(A23)]: 

  1
90

1 0 0
0 1 01                      (I.10)
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First we multiply D(0) by R.  Since the matrix multiplication is not 
commutative (see Appendix A for matrix multiplication rules), it is 
necessary to specify that we postmultiply D(0) by R: 
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Then we premultiply the result by R-1: 
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4 0 4 0 2 0 2 0
0 6 0 4 0 3 0 21    (I.12)
4 0 4 0 2 0 2 02
0 4 0 6 0 2 0 3

i i
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− −   
   − −   = =
   
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 It is good to check this result by making sure that the matrix 
D(1) is Hermitian, i.e., every matrix element below the main diagonal 
is the complex conjugate of its corresponding element above the 
diagonal [see (A24)] (neither the rotation operators, nor the partial 
results need be Hermitian).  Comparing D(1) to D(0) we see that the 
90o proton pulse created proton single-quantum coherences,  did not 
touch the carbon,  and redistributed the populations. 
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3.4  Evolution from  t (1) to t (2) 
 
 The standard formula1 describing the time evolution of the 
density matrix elements in the absence of a pulse is: 
 
                                       ( ) (0)exp( )mn mn mnd t d i tω= −  (I.13) 
 
dmn is the matrix element (row m, column n) and wmn=(Em En)/  is 
the angular frequency of the transition mÆn. 

-

 We observe that during evolution the diagonal elements are 
invariant since exp[i(Em Em)/ ] = 1.  The off diagonal elements 
experience a periodic evolution.  Note that dmn(0) is the starting point 
of the evolution immediately after a given pulse.  In the present case, 
the elements dmn(0) are those of D(1). 

-

 We now want to calculate D(2) at the time t(2) shown in Figure 
I.2.  We have to consider the evolution of elements d13 and d24.  In a 
frame rotating with the proton transmitter frequency wtrH,  after an 
evolution time te/2, their values are: 
 
                                     13 132 exp( / 2)ed i i t B= − − Ω =  (I.14) 
                                     24 242 exp( / 2)ed i i t C= − − Ω =  (I.15) 
 
where  W13 13= -w w trH   and  W24 24= -w w trH  . 
 
Hence 
 

   

2 0 0
0 3 0

(2)
* 0 2 0                       (I.16)

0 * 0 3

B
C

D
B

C

 
 
 =
 
 
 

 
B* and C* are the complex conjugates of B and C (see Appendix A).  
 
                                                           
1In our treatment, relaxation during the pulse sequence is ignored.  This 
contributes to a significant simplification of the calculations without 
affecting the main features of the resulting 2D spectrum. 
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3.5  The Second Pulse 
 

The rotation operators for this pulse are [see(C17)]:  

1
180 180

0 0 0 0 0 0
0 0 0 0 0 0

 (I.17);    (I.18)
0 0 0 0 0 0
0 0 0 0 0 0

xC xC

i i
i i

R R
i i

i i

−

−   
   −   = =
   −
   −   

 
 
 
Postmultiplying D(2) by R gives: 
 

180

0 2 0
3 0 0

(2)                 (I.19)
0 * 2

* 0 3 0
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 
 

 

 
 
Premultiplying (I.19) by R-1 gives: 
 

   

3 0 0
0 2 0

(3)                  (I.20)
* 0 3 0

0 * 0 2

C
B

D
C

B

 
 
 =
 
 
 

 
 
Comparing D(3) with D(2) we note that the 180o pulse on carbon has 
caused a population inversion (interchange of d11 and d22). It has also 
interchanged the coherences B and C (d13 and d24).  This means that 
B, after having evolved with the frequency  ω13  during  the first half 
of the evolution time [see (I.14)], will now evolve with the frequency 
ω24, while C switches form ω24 to ω13.  
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3.6  Evolution from  t (3) to t (4) 
 
 According to (I.13) the elements d13and d42 become: 
 

                            d C13 13exp( / 2)ei t= − Ω  (I.21) 
                            d B24 24exp( / 2)ei t= − Ω  (I.22) 
 

From Figure I.1 we see that in the laboratory frame 
 
                      13 2 ( / 2)X HJ Jω π ν ω π= − = +  (I.23) 
                      24 2 ( / 2)X HJ Jω π ν ω π= − = −  (I.24) 
 
In the rotating frame (low case) w becomes (capital) W.  Taking the 
expressions of B and C from (I.14) and (I.15), relations (I.21) and 
(I.22) become 
 
       13 2 exp[ ( ) / 2]exp[ ( ) / 2]H e H ed i i J t i J tπ π= − − Ω − − Ω +  

        2 exp( )H ei i= − − Ω t
d

 (I.25) 
        (I.26) 24 132 exp( )H ed i i t= − − Ω =
 
 None of the matrix elements of D(4) contains the coupling 
constant J.  The result looks like that of a decoupled evolution.  The 
averaged shift WH (center frequency of the doublet) is expressed while 
the coupling is not.  We know that the coupling J was actually present 
during the evolution, as documented by the intermediate results D(2) 
and D(3).  We call the sequence te/2 - 180C - te/2 a refocusing routine.  
The protons which were fast (W13) during the first te/2 are slow (W24) 
during the second te/2 and vice versa (they change label). 
 
3.7  The Role of  D1  
 
 In order to understand the role of the supplementary evolution 
D1 we have to carry on the calculations without it, i.e., with d13=d24. 
We find out (see Appendix I) that the useful signal is canceled.  To 
obtain maximum signal, d13 and d24 must be equal but of opposite 
signs.  This is what the delay D1 enables us to achieve. 


