Contents

	eword		X
Pre			хi
Ack	nowledgeme	nts	xiii
	Pa	rt I. The Density Matrix Formalism	
1.	Introducti	on	1
2.	The Densi	ty Matrix	1
3.	The Densi	ty Matrix Description of a Two-Dimensional	
		lear Correlation Sequence (2DHETCOR)	4
	3.1	Calculation Steps	4
	3.2	Equilibrium Populations	5
		The First Pulse	7
	3.4		9
	3.5		10
	3.6	Evolution from $t(3)$ to $t(4)$	11
	3.7	The Role of Δ_1	11
	3.8	Third and Fourth Pulses	13
	3.9	The Role of Δ_2	14
	3.10	Detection	16
	3.11	1	
		Representation	21
4.	The Densi	ty Matrix Description of a Double-Quantum	
	Coherence	Experiment (INADEQUATE)	31
	4.1	Equilibrium Populations	32
	4.2	The First Pulse	34
	4.3		35
	4.4	The Second Pulse	37
	4.5	Evolution from $t(3)$ to $t(4)$	38
	4.6	The Third Pulse	39
	4.7	Evolution from $t(5)$ to $t(6)$	39
	4.8	The Fourth Pulse	40
	4.9	Detection	42
	4.10	Carbon-Carbon Connectivity	43

vi Contents

5.	Density Ma	Density Matrix Description of COSY (Homonuclear				
	COrrelatio	on SpectroscopY)	45			
	5.1	Equilibrium Populations	45			
	5.2	The First Pulse	46			
	5.3	Evolution from $t(1)$ to $t(2)$	46			
	5.4	The Second Pulse	46			
	5.5	Detection	49			
6.	COSY with Phase Cycling					
	6.1	Comparison with the Previous Sequence	52			
	6.2	The Second Pulse	53			
	6.3	Detection	57			
7	Conclusion	of Part I	59			
	D4	H. The Book lead On control France Prove				
	Part	II. The Product Operator Formalism				
1.	Introduction	on	60			
2.		the Density Matrix in Terms of	60			
	Angular M	Iomentum Components	60			
3.	Describing the Effect of a Pulse inTerms of					
	Angular M	lomenta	62			
4.		essful Attempt to Describe a Coupled				
	Evolution i	in Terms of Angular Momenta	65			
5	Product Operators (PO)					
6.	Pulse Effec	ets (Rotations) in the Product				
	Operator I	Formalism	70			
7.	Treatment	of Evolutions in the Product				
	Operator I		74			
8.	Refocusing	g Routines	77			

		Contents	vii
9.	PO Treatment of 2DHETCOR: Two Spins (CH))	80
10.	PO Treatment of 2DHETCOR: CH ₂ and CH ₃		83
11.	PO Treatment of a Polarization Transfer Seque	nce:	
	INEPT (Insensitive Nuclei Enhancement by Polarization Transfer) with Decoupling		87
12.	Coupled INEPT		89
13.	PO Treatment of DEPT (Distortionless		
	Enhancement Polarization Transfer)		94
14.	PO Treatment of APT (Attached Proton Test)		102
	Appendices		
A.	Math Reminder		105
B.	Density Matrix Formalism		120
C .	Angular Momentum and Rotation Operators		137
D.	Properties of Product Operators		147
E.	Demonstration of the Rotation Rules		159
F.	Demonstration of the Coupled Evolution Rules		163
G.	PO Evolution Tables		169
Н.	Demonstration of the Refocusing Rules		171
I.	Supplementary Discussions		174
J.	Product Operators and Magnetization Compone	ents	180
K.	When to Drop Non-observable Terms (NOT)		183
L.	Magnetic Equivalence: The Multiplet Formalism	n	184
M.	Rotations about Nontrivial Axes		188
Sug	gested Readings		192
Inde	Index		193