Interleave 17O/31P MRS: Novel Approach for In Vivo Determination of Defects in Oxidative Phosphorylation (Mitochondrial Metabolism)

G.D. MATEESCU and D. FERCU
Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106

Introduction
Defects in oxidative phosphorylation (OXPHOS) caused by respiration inhibitors (uncouplers) or mitochondrial DNA mutants are related to drug and degenerative processes (including late-onset diabetes, ischemic heart, Parkinson's and Alzheimer's disease, aging, etc.). So far, correlation of oxygen consumption with phosphate metabolites in the presence of OXPHOS inhibitors has been performed only in vitro, on isolated mitochondria.1-3 We report here preliminary results of the first attempt to obtain in vivo, virtually simultaneous oxygen-17 and phosphorus-31 information on normal and perturbed oxidative phosphorylation.

Method
Tenebrio molitor larvae (0.6-0.8 g) are placed in a specially designed dual-plunger, thin wall syringe (10 mm OD) which ensures efficient transfer and minimal losses of 17O enriched air. It also allows known quantities of CHCl\textsubscript{3} to be mixed with the synthetic air. The minirespirator is immediately inserted in a 4.7 Tesla magnet. 17O spectra are first taken at 27.12 MHz (6000 averages with 20 ms acquisition time, i.e., 120 s per spectrum). The probe is then tuned at 81 MHz and a 31P spectrum is taken (1024 averages with 0.1 s acquisition at 0.4 s intervals, i.e., 512 s per spectrum). This sequence is repeated every 30 min.

Results and Discussion
The Figures shown below show the evolution of the 31P peaks of inorganic phosphate, phosphoarginine, and gamma ATP and the 17O peak of the nascent mitochondrial water.4,5 It is seen that, as indicated by the 17O spectra the larvae's death occurs at approximately 375 min. However, the phosphoarginine peak first shows a slight increase in concentration before following the decreasing trend of ATP. As a result of the uncoupling of the oxidative phosphorylation by the added chloroform, there is a significant enhancement of oxygen consumption, as shown be the rate of formation of 17O-metabolic water. In contrast to some vertebrate tissues, the 31P spectra of the T. molitor larvae display a wider distribution of sugar phosphates. Deconvolution of the overlapping peaks is necessary in order to obtain quantitative results.

As seen in the second Figure, we were able to detect in the 17O spectrum the incorporation of the 17O label into PO\textsubscript{4} and C=O groups via hydrolysis and hydration by the metabolic water. The average metabolic rate (MR\textsubscript{O2}) was 0.2 μmole·g-1·min-1. We were also able to determine the total body water of the larvae (43±5 %) by means of natural abundance 17O MRS.

Conclusion
Interleave 17O/31P MRS is proposed in order to eliminate the effects of metabolism variations due to conditions such as developmental stage, temperature, pressure, humidity and diet. This makes it possible to quantitatively determine the inhibitory or uncoupling effects on OXPHOS of various agents such as anesthetics, drugs and mitochondrial DNA mutagens.6

References