Evidence suggests that increased oxidative stress plays an important role in AD neurodegeneration (6–8). Many proteins and DNA undergo oxidation more readily in AD brains, and the exact role that Aβ plays in these processes is not clear (9). The binding between Aβ and metals such as copper and zinc accelerates β-aggregation and generates reactive oxygen species and H2O2, which in turn accelerates oxidative damage to other proteins (10, 11). In all of these processes, the Met-35 side chain of Aβ is thought to play a serous role because oxidized Met-35 (Met-35ox) is found in variable amounts of post-mortem AD plaques (12, 13) and, for many proteins, the methionine side chains are easily oxidized under physiological conditions (Met → Metox) (14, 15). Moreover, because oxidized methionine can be recovered enzymatically back to its reduced state (14), it was proposed that, for some proteins, surface-exposed methionine residues may function as antioxidants and protect other amino acids from irreversible oxidative damage (16).

For Aβ, contradicting reports exist between the Met-35 oxidation state and its effects on β-aggregation, toxicity, fibril morphology, and biological roles. A few reports demonstrate that Met-35ox increases β-aggregation and toxicity (3, 17), whereas others showed the opposite effects (18–21). The reason for these discrepancies is not clear, although they could be the result of several factors such as differences in the handling of Aβ (the well known lot-to-lot variability) (3, 22, 23) and/or differences in the solution conditions (24), i.e. pH, peptide concentrations, temperature, and the type of peptide employed (Aβ(1–40) or Aβ(1–42)). Because of the importance of the Met-35 side chain in oxidative stress and its possible role as an electron donor for the reduction of Aβ-bound Cu2+ to Cu1+ (15, 21), we undertook our own systematic analysis using the more pathogenic Aβ(1–42) under native-like conditions (aqueous solution, neutral pH). Here, for the first time we show that oxidation of Met-35 to Met-35ox significantly impedes the rate of amyloid formation and alters the fibril morphology. These results provide support for the hypothesis that oxidative stress and Aβ amyloid formation are intimately related in AD pathology.

EXPERIMENTAL PROCEDURES

Materials—Thioflavin-T (Th-T) was purchased from Sigma (81K3643), and the Aβ(1–42) peptide was synthesized and purified as described (20). The primary amino acid sequence for the amyloid Aβ(1–42) peptide is the following: H N-DaEFP-EDSG-Y133EHHQ133KLVFF28-EDV Y2S3NKG A352HLM35GGL Y401A42, COO-. Peptide identity was verified by NMR spectroscopy and mass spectrometry (MS).

Preparation of Aβ(1–42) Solutions—Lyophilized Aβ(1–42) peptide (1.8 mg, 40 μmol) was disaggregated first by thoroughly dissolving the peptide in dilute NaOH solution (1.9 ml, 10 mM) with sonication for 1 min (26). This disaggregation procedure, which removes potential interference from small aggregates (“seeds”), is vital for obtaining consistent results and overcomes many of the lot-to-lot discrepancies frequently encountered with Aβ peptides (22). The basic pH solution of Aβ(1–42) (1.9 ml, 10 mM) was then combined directly with a potassium phosphate-buffered solution (6.1 ml, 10 mM, pH 7.3) to yield a final stock solution (8 ml) with a peptide concentration of 50 μM. The pH of the stock solution was checked and, if needed, carefully adjusted to pH 7.3 with dilute NaOH or trifluoroacetic acid solutions.

Oxidation of Aβ(1–42)—Met-35 oxidation was done according to methods previously described for the Aβ(1–40) peptide (19), which involved the addition of dilute H2O2 (5 μl, 7.5% by weight) to a phosphate-buffered solution of Aβ(1–42) (1 ml, 50 μM). The reaction was
done in 4 h, and a single product was obtained, as shown by matrix-assisted laser desorption ionization MS and two-dimensional NMR. The product was freeze-dried to remove excess H2O, and redissolved in water. In the MS, the molecular ion of the product had a molecular mass (4531 Da) that was 16 Da higher than the native A-42 (4515 Da). This established that Met sulfoxide was the only product (these results are also consistent with NMR spectral data; not shown). After 1 week, the MS analysis of the peptide solution containing the H2O2 gave identical results, demonstrating that other possible oxidations (such as forming a dityrosine adduct (7, 27)) did not take place. For the time-dependent Th-T and CD studies, a fresh 50 μM A-42 stock solution (7.5 ml) in phosphate buffer (10 mM) was partitioned into 5 equal fractions (1.5 ml) and incubated at 22 °C for specific intervals before initiating Met-35 oxidation (Met-35 = Met-35Met-35). Met-35 → Met-35Met-35 to fractions 2, 3, 4, and 5 was started by the addition of dilute H2O2 (8 ml) and A-42/H2O2 (7.5 μM) at phosphate buffer (10 mM) at 0.08, 10, 22, and 72 h, respectively.

Circular Dichroism Spectroscopy—The CD spectra were obtained at 22 °C using a J-810 spectropolarimeter (Jasco) and a 1-mm path length cell (Hellma). For each sample, five accumulative readings were averaged and acquired with 0.2-nm resolution, a 2-s response time, and 50 nm/min scan speed. Spectra were obtained from 190 to 250 nm. Two methods were used to obtain the percent soluble β-sheet structure: 1) a comparison of the ratios between the β-sheet ellipticities at 195 and 217 nm; and 2) spectral deconvolution using the program CDanal (28). Both methods gave comparable results, and both have been used previously for CD studies of the A-42 (29, 30). The percent soluble β-sheet determined by CDanal is presented in Fig. 3D.

Atomic Force Microscopy—Images were generated on a Multimode AFM instrument equipped with a Nanoscan III controller (Digital Instruments) using an “E”-type scanner with an x,y range of 12.5 μm. Imaging was done at 22 °C under the air-tapping mode with commercially available silicon NanoProbes (Digital Instruments). In general, the scanning parameters were as follows: 2 V, initial root-mean-square amplitude; set point at 80% of the free amplitude; 250–350 kHz tapping frequency; 2 Hz, scan rate; and 2512 x 512-pixel resolution. A three-dimensional rendering was used for processing, with the image tilted by an angle of 5°.

RESULTS

Secondary Structure Analysis of the Aβ-(1–42) and Aβ-(1–42)Met-35Met-35 by CD—Fig. 1 presents the CD spectra for Aβ-(1–42) and Aβ-(1–42)Met-35Met-35 peptide solutions after 0.17 and 48 h of aging, respectively. Aβ-(1–42) shows a large conformational shift (random → β-sheet), whereas Aβ-(1–42)Met-35Met-35 remains predominantly random.

Converses agrees with previous observations (24, 33, 34). By contrast, after 48 h Aβ-(1–42)Met-35Met-35 remained predominantly random, with a modest reduction in the intensity of the 198 nm band. These results establish that Met-35Met-35 inhibits the random → β-sheet conversion associated with the β-aggregation process and Aβ neurotoxicity (2).

Morphological Studies on Aβ-(1–42) and Aβ-(1–42)Met-35Met-35—To test whether Met-35Met-35 affects Aβ fibril morphology, we used AFM, a well established technique for elucidating the fibril structures (31, 35–37). For an accurate comparison with the CD data, we used the same peptide solutions aged for 0.17 and 48 h (Fig. 1).

After aging for 0.17 h, the Aβ-(1–42) and Aβ-(1–42)Met-35Met-35 solutions gave virtually identical AFM data, with essentially no detectable fibrils and only small aggregates. However, samples aged for 48 h gave a distinct set of data, with the Aβ-(1–42) producing two well defined fibril types (Fig. 2A) and the Aβ-(1–42)Met-35Met-35 producing no fibrils but only small globular structures (Fig. 2B). These globular structures had smaller dimensions and variable heights (0.7–3.3 nm, centered mostly at 1.4 ± 0.3 nm), appropriate to the assembly of small oligomers into larger conglomerates (51). For the Aβ-(1–42), the two types of fibrils were: large fibrils, brighter and sparsely dispersed (Fig. 2, A and C–E); and smaller, thin filaments. Many of the larger fibrils had average dimensions consistent with the Aβ protofibril, which is believed to be a neurotoxic intermediate formed during β-amyloidosis (39). These protofibrils had a 3.6 ± 0.6 nm average diameter and 21 ± 4 μm periodicities, analogous to previously reported protofibril dimensions (3–4 nm average diameter, 20–22 nm periodicity) (31, 40). The second fibril type were thin filaments, also detected by Stine et al. (35), that had an 0.65 ± 0.07 average height with no clear periodicity. For the unmodified Aβ-(1–42), incubation times greater than 48 h lead to formation of longer protofibrils, as well as Type 1 and Type 2 mature fibrils (31, 35, 38, 40). Taken together, these data establish that Met-35Met-35 markedly affects Aβ fibril morphology and inhibits production of both the thin filaments and the protofibril.

Time-dependent Effects of Met-35Met-35 on the Secondary Structure and β-Aggregation Rates of Aβ-(1–42)—The CD results established that Met-35Met-35 stabilizes the random structure and slows down production of the β-sheet structure found in fibrils (Fig. 1). To explore the possibility that Met-35Met-35 not only slows down β-aggregation as an early event (random → β-sheet) but also at later stages (β-sheet (soluble) → β-sheet (amyloid fibril)), we undertook more detailed studies. These involved initiating Met-35 → Met-35Met-35 at different time points during sample aging and monitoring the secondary structure and
Effect of Met-35 Oxidation on Aβ-(1–42) Aggregation

Fig. 2. Representative AFM images of Aβ-(1–42) (A, C, D, E) and Aβ-(1–42)/Met-35ox (B). All images were taken from peptide solutions (50 μM) aged for 48 h (22 °C, pH 7.3). All images are presented with 10 nm in the Z-range. In the image of Aβ-(1–42) (A), protofibrils, aggregates of protofibrils, and mature fibers with a clear periodicity were observed. By contrast, Aβ-(1–42)/Met-35ox (B) shows no fibrillar but only globular structures. The Aβ-(1–42) mature fiber had dimensions of 9.0 nm in height 294.9 nm in length with a periodicity of 38.3 ± 5.2 nm (E).

Fig. 3. Time-dependent Effect of Met-35ox on the rate of random → β-sheet for Aβ-(1–42). A,flow chart summarizing the partitioning of a single Aβ-(1–42) solution (50 μM, pH 7.3) into five equivalent fractions. For fractions 2, 3, 4, and 5, the time at which oxidation was commenced is also provided. Each fraction was monitored over time by CD and Th-T; representative CD spectra for fractions 1 and 4 are shown in B and C, respectively. The overlaid CD data for fraction 4 (C, oxidized at 22 h) does not include the 0.17- and 10-h traces, because these are the same as those for the unoxidized control (B). The graph legend symbols (A) summarize the percent β-sheet structure as determined from the CD data (D) and the Th-T fluorescence data (E). As shown, Met-35ox causes a significant lag phase and reduction in β-sheet production.

β-aggregation rates using CD and the Th-T binding assay (32).

Shown in Fig. 3A is an outline of the overall procedure. A freshly prepared Aβ-(1–42) solution was split into five equal fractions, and these solutions were then monitored by CD and Th-T for a period of up to 240 h. Fraction 1 represents the control, unoxidized sample, whereas fractions 2, 3, 4, and 5 were oxidized at 0.08, 10, 22, and 72 h of aging, respectively. Representative CD spectra for fractions 1 and 4 are presented in Fig. 3 (B and C) along with the estimated percent β-sheet structure and Th-T results for all five fractions (Fig. 3, D and E).

The increases in both the negative and positive ellipticities at 195 and 217 nm (Fig. 3B) demonstrate that the β-sheet content in unoxidized Aβ-(1–42) gradually increases over time, leveling off at 68–70% at 216–240 h of aging (Fig. 3D). In contrast, the Met-35ox samples show significantly reduced rates of β-sheet production. For example, with fraction 4 the β-sheet content (48–50%) remained nearly constant between 24 and 96 h followed by a rise at 120 h to 60% β-sheet (Fig. 3, C and D). Regardless of the time in which the Met-35ox was started, all samples showed similar lag phases (70–100 h), and all eventually went on to produce more β-sheet structures (Fig. 3D). The Th-T data shows comparable sigmoidal β-aggregation curves (Fig. 3E) in which the oxidized samples have reduced fluorescence because of their lower fibril content. On average, the final levels of β-sheet structure are 20% less with the oxidized samples, irrespective of the oxidation time. These data establish that Met-35ox hinders β-amyloidosis (random → β-sheet (soluble) → β-sheet (fibril)), regardless of the predominant solution conformation.

DISCUSSION

It is now thought that therapeutic approaches for preventing the conformational conversions and fibrillation of Aβ could ameliorate the effects associated with oxidative stress and Aβ-induced neurotoxicity in Alzheimer’s patients. Recent reports have demonstrated that soluble Aβ oligomers interfere with long-term potentiation (8), and another report shows that in vitro application of Aβ-derived diffusible ligands formed from synthetic Aβ-(1–42) causes neurological dysfunction in the hippocampus long before neurons degenerate (41). It is now evident that the research efforts directed at providing a molecular basis for the biological role of the Aβ and its relationship to oxidative stress, which is extensive and constitutes an early event in AD (42), will be a key factor in determining the most effective interventions.

The present biophysical data demonstrate that Met-35 to Met-35ox oxidation slows down β-aggregation and disrupts the characteristic fibril morphology. The decreased ability of Aβ-(1–42)/Met-35ox toward β-aggregation could be the result of decreased hydrophobicity of the C-terminal tail, which leads to greater solubility and less hydrophobic induced aggregation (14, 43). A similar rationale was used to account for the decreased fibrillation of methionine-oxidized α-synuclein, a brain protein that is predominantly random but can produce the β-sheet aggregates found in Lewy bodies in Parkinson’s disease (44). Similar lag phases for reduced fibrillation in Aβ-(1–42) (Fig. 3), irrespective of whether the major starting conformation is random or β-sheet, suggest that the increased polarity of Met-35ox leads to a nonproductive or alternative β-aggregation association that does not produce the characteristic amyloid-like fibrils.

A previous study (18) reported that Met-35ox inhibits β-aggregation of Aβ-(1–40), whereas another study (20), done in water/acetic acid solution, showed that the Aβ-(1–40)/Met-35ox monomer did not aggregate beyond a dimer. Because the Aβ-(1–40)/Met-35ox and Aβ-(1–42)/Met-35ox monomeric structures...
are predominantly random (45), these results demonstrate that Met-35\alpha prevents a random → β-sheet conversion, consistent with our present results with Aβ(1–42). The discrepancies with previous reports, in which Aβ(1–42:Met-35\alpha) showed no inhibitory effect on β-aggregation or fibril formation (3, 21) or Met-35\alpha showed enhanced β-aggregation with Aβ(1–40) (17), is probably because of the different solution conditions (such as pH and peptide concentration) and different peptide handling procedures (23). In the present work, we addressed these issues by thoroughly disaggregating the Aβ(1–42) peptide (26) and partitioning this peptide solution into fractions, so that the only difference among the fractions is the Met-35 oxidation state. Our results were reproducible with the same or different Aβ(1–42) peptide batches, regardless of whether synthetic and recombinant peptide was employed. Interestingly, our data also demonstrate that the inhibition is independent of the predominant solution conformation (random or β-sheet), suggesting that the slightly increased polarity of the Met-35\alpha side chain prevents intermolecular association of random monomers and/or β-sheet aggregates. This result may have implications for Aβ clearance, as the delay in β-aggregation may allow sufficient time for enzymes to degrade the monomer or dimers for excetration (46).

In addition, the present studies are the first to demonstrate a lack of a protofibril for Aβ(1–42:Met-35\alpha), which has been proposed to be a key intermediate in β-amyloidosis and neurotoxicity (31, 39, 40). This could explain why Met-35\alpha causes a lack of a protofibril for Aβ (47). Indeed, in certain conditions function as antioxidants (47). Indeed, in physiologic constituents, have a protective effect and under conditions for excretion (46).

On the basis of the present results, we support the view that Aβ(1–40) and Aβ(1–42) peptides, which are both normal physiologic constituents, have a protective effect and under certain conditions function as antioxidants (47). Indeed, in normal individuals, low levels of Aβ are potent antioxidants and reduce the levels of oxidative stress, whereas in Alzheimer's patients, elevated Aβ production could be triggered by the presence of Aβ\alpha peptides, which are both normal physiologic constituents, have a protective effect and under certain conditions function as antioxidants (47). Indeed, in certain conditions function as antioxidants (47). Indeed, in physiologic constituents, have a protective effect and under conditions for excretion (46).

Acknowledgments—We thank Rekha Srivivasan and Witold Surewicz for helpful discussions, Chin-Fin Pan for assistance with the THT measurements, Shu Guang Chen for MS measurements, and finally David Teplow and Marina Kirkitaedze for assistance with the CDANAL program.

REFERENCES