Contents

	Preface		
1	Haar	measure on the classical compact matrix groups	10
	1.1	The classical compact matrix groups	10
	1.2	Haar measure	16
	1.3	Lie group structure and character theory	26
2	Distr	ibution of the entries	39
	2.1	Introduction	39
	2.2	The density of a principal submatrix	45
	2.3	How much is a Haar matrix like a Gaussian matrix?	50
	2.4	Arbitrary projections	60
3	Eiger	value distributions: exact formulas	67
	3.1	The Weyl integration formula	67
	3.2	Determinantal point processes	77
	3.3	Matrix moments	86
	3.4	Patterns in eigenvalues: powers of random matrices	91
4	Eiger	value distributions: asymptotics	95
	4.1	The eigenvalue counting function	95
	4.2	The empirical spectral measure and linear eigenvalue	
		statistics	110
	4.3	Patterns in eigenvalues: self-similarity	117
	4.4	Large deviations for the empirical spectral measure	121
5	Conc	entration of measure	134
	5.1	The concentration of measure phenomenon	134
	5.2	Logarithmic Sobolev inequalities and concentration	136
	5.3	The Bakry-Émery criterion and concentration for the	
		classical compact groups	143

Contents

	5.4	Concentration of the spectral measure	155
6	Geometric applications of measure concentration		
	6.1	The Johnson–Lindenstrauss lemma	163
	6.2	Dvoretzky's theorem	168
	6.3	A measure-theoretic Dvoretzky theorem	173
7	Characteristic polynomials and the ζ -function		
	7.1	Two-point correlations and Montgomery's conjecture	183
	7.2	The zeta function and characteristic polynomials of	
		random unitary matrices	187
	7.3	Numerical and statistical work	197
	Index		206
	References		207