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Lecture 1

Introduction to the compact classical
matrix groups

1.1 What is an orthogonal/unitary/symplectic matrix?
The main question addressed in this lecture is “what is a random orthogonal/unitary/symplectic
matrix?”, but first, we must address the preliminary question: “What is an orthogonal/unitary/sympletic
matrix?”

Definition.
1. An n× n matrix U over R is orthogonal if

UUT = UTU = In, (1.1)

where In denotes the n× n identity matrix, and UT is the transpose of U . The set of
n× n orthogonal matrics over R is denoted O (n).

2. An n× n matrix U over C is unitary if

UU∗ = U∗U = In, (1.2)

where U∗ denotes the conjugate transpose of U . The set of n × n unitary matrices
over C is denoted U (n).

3. An 2n× 2n matrix U over C is symplectic1 if U ∈ U (2n) and

UJU∗ = U∗JU = J, (1.3)

where

J :=

[
0 In
−In 0

]
.

The set of 2n× 2n symplectic matrices over C is denoted Sp (2n).
1Alternatively, you can define the symplectic group to be n × n matrices U with quaternionic entries,

such that UU∗ = In, where U∗ is the (quaternionic) conjugate transpose. You can represent quaternions as
2 × 2 matrices over C, and then these two definitions should be the same. Honestly, I got sick of it before I
managed to grind it out, but if you feel like it, go ahead.
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Note that it is immediate from the definitions that U is orthogonal if and only if UT is
orthogonal, and U is unitary or symplectic if and only if U∗ is.

The algebraic definitions given above are the most standard and the most compact.
However, it’s often more useful to view things more geometrically. (Incidentally, from
now on in these lectures, we’ll mostly follow the nearly universal practice in this area of
mathematics of ignoring the symplectic group most, if not all, of the time.)

One very useful viewpoint is the following.

Lemma 1.1. Let M be an n × n matrix over R. Then M is orthogonal if and only if the
columns of M form an orthonormal basis of Rn. Similarly, if M is an n × n matrix over
C, then M is unitary if and only if the columns of M form an orthonormal basis of Cn.

Proof. Note that the (i, j)th entry of UTU (if U has real entries) or U∗U (if U has complex
entries) is exactly the inner product of the ith and jth columns of U . So UTU = In or
U∗U = In is exactly the same thing as saying the columns of U form an orthonormal basis
of Rn or Cn.

If we view orthogonal (resp. unitary) matrices as maps on Rn (resp. Cn), we see even
more important geometric properties.

Lemma 1.2.
1. For U an n×n matrix over R, U ∈ O (n) if and only if U acts as an isometry on Rn;

that is,
〈Uv, Uw〉 = 〈v, w〉 for all v, w ∈ Rn.

2. For U an n×n matrix over C, U ∈ U (n) if and only if U acts as an isometry on Cn:

〈Uv, Uw〉 = 〈v, w〉 for all v, w ∈ Cn.

Proof. Exercise.

Another important geometric property of matrices in O (n) and U (n) is the following.

Lemma 1.3. If U is an orthogonal or unitary matrix, then | det(U)| = 1.

Proof. If U ∈ O (n), then

1 = det(I) = det(UUT ) = det(U) det(UT ) =
[

det(U)
]2
.

If U ∈ U (n), then

1 = det(I) = det(UU∗) = det(U) det(U∗) =
∣∣ det(U)

∣∣2.
We sometimes restrict our attention to the so-called “special” counterparts of the or-

thogonal and unitary groups, defined as follows.
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Definition. The set SO (n) ⊆ O (n) of special orthogonal matrices is defined by

SO (n) := {U ∈ O (n) : det(U) = 1}.

The set SU (n) ⊆ U (n) of special unitary matrices is defined by

SU (n) := {U ∈ U (n) : det(U) = 1}.

A final (for now) important observation is that the sets O (n), U (n), Sp (2n), SO (n),
and SU (n) are compact Lie groups; that is, they are groups (with matrix multiplication as
the operation), and they are manifolds. For now we won’t say much about their structure
as manifolds, but right away we will need to see that they can all be seen as subsets of
Euclidean space – O (n) and SO (n) can be thought of as subsets of Rn2; U (n) and SU (n)
can be seen as subsets of Cn2 and Sp (2n) can be seen as a subset of C(2n)2 . You could see
this by just observing that there are n2 entries in an n×n matrix and leave it at that, but it’s
helful to say a bit more. No matter how we organize the entries of, say, a matrix A ∈ O (n)
in a vector of length n2, it will be the case that if A,B ∈ O (n) with entries {aij} and {bij},
and ~A and ~B denote the vectors in Rn2 to which we have associated A and B, then〈

~A, ~B
〉

=
n∑

i,j=1

aijbij = Tr(ABT ).

So rather than fuss about how exactly to write a matrix as a vector, we often talk instead
about the Euclidean spaces Mn(R) (resp. Mn(C)) of n×n matrices over R (resp. C), with
inner products

〈A,B〉 := Tr(ABT )

for A,B ∈Mn(R), and
〈A,B〉 := Tr(AB∗)

forA,B ∈Mn(C). These inner products are called the Hilbert-Schmidt inner products on
matrix space. The norm induced by the Hilbert-Schmidt inner product is sometimes called
the Frobenius norm or the Schatten 2-norm.

Notice that the discussion above presents us with two ways to talk about distance within
the compact classical matrix groups: we can use the Hilbert-Schmidt inner product and
define the distance between two matrices A and B by

dHS(A,B) := ‖A−B‖HS :=
√
〈A−B,A−B〉HS =

√
Tr
[
(A−B)(A−B)∗

]
. (1.4)

On the other hand, since for example A,B ∈ U (n) can be thought of as living in a sub-
manifold of Euclidean space Mn(C), we could consider the geodesic distance dg(A,B)
between A and B; that is, the length, as measured by the Hilbert-Schmidt metric, of the
shortest path lying entirely in U (n) betweenA andB. In the case of U (1), this is arc-length
distance, whereas the Hilbert-Schmidt distance defined in Equation (1.4) is the straight-line
distance between two points on the circle. It doesn’t make much difference which of these
two distances you use, though:
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Lemma 1.4. Let A,B ∈ U (n). Then

dHS(A,B) ≤ dg(A,B) ≤ π

2
dHS(A,B).

Exercise 1.5. Prove Lemma 1.4:
1. Observe that dHS(A,B) ≤ dg(A,B) trivially.
2. Show that dg(A,B) ≤ π

2
dHS(A,B) for A,B ∈ U (1); that is, that arc-length on the

circle is bounded above by π
2

times Euclidean distance.
3. Show that both dHS(·, ·) and dg(·, ·) are translation-invariant; that is, if U ∈ U (n),

then

dHS(UA,UB) = dHS(A,B) and dg(UA,UB) = dg(A,B).

4. Show that it suffices to assume that A = In and B is diagonal.
5. If A = In and B =

[
diag(eiθ1 , . . . , eiθn)

]
, compute the length of the geodesic from

A to B given by U(t) :=
[
diag(eitθ1 , . . . , eitθn)

]
, for 0 ≤ t ≤ 1.

6. Combine parts 2, 4, and 5 to finish the proof.

We observed above that orthogonal and unitary matrices act as isometries on Rn and
Cn; it is also true that they act as isometries on their respective matrix spaces, via matrix
multiplication.

Lemma 1.6. If U ∈ O (n) (resp. U (n)), then the map TU : Mn(R) → Mn(R) (resp.
TU : Mn(C)→Mn(C)) defined by

TU(M) = UM

is an isometry on Mn(R) (resp. Mn(C)) with respect to the Hilbert-Schmidt inner product.

Proof. Exercise.

1.2 What is a random O (n)/U (n)/Sp (2n) matrix?
The most familiar kind of random matrix is probably one described as something like:
“take an empty n × n matrix, and fill in the entries with independent random variables,
with some prescribed distributions”. Thinking of matrices as the collections of their entries
is very intuitive and appealing in some contexts, but less so in ours. Since orthogonal
matrices are exactly the linear isometries of Rn, they are inherently geometric objects, and
the algebraic conditions defining orthogonality, etc., are about the relationships among the
entries that create that natural geometric property.

The situation is analogous to thinking about, say, a point on the circle in R2 (it’s a
generalization of that, actually, since S1 ⊆ C is exactly U (1)). We can think of a point on
the circle as z = x + iy with the condition that x2 + y2 = 1, but that’s a bit unwieldy, and
definitely doesn’t lead us directly to any ideas about how to describe a “uniform random
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point” on the circle. It’s much more intuitive to think about the circle as a geometric object:
what we should mean by a “uniform random point on the circle” should be a complex
random variable taking values in S1 ⊆ C, whose distribution is rotation invariant; that
is, if A ⊆ S1, the probability of our random point lying in A should be the same as the
probability that it lies in eiθA := {eiθa : a ∈ A}.

The story with the matrix groups is similar: if G is one of the matrix groups defined
in the last section, a “uniform random element” of G should be a random U ∈ G whose
distribution is translation invariant; that is, if M ∈ G is any fixed matrix, then we should
have the equality in distribution

MU
d
= UM

d
= U.

Alternatively, the distribution of a uniform random element of G should be a translation
invariant probability measure µ on G: for any subset A ⊆ G and any fixed M ∈ G,

µ(MA) = µ(AM) = µ(A),

where MA := {MU : U ∈ A} and AM := {UM : U ∈ A}.
It turns out that there is one, and only one, way to do this.

Theorem 1.7. Let G be any of O (n), SO (n), U (n), SU (n), or Sp (2n). Then there is a
unique translation-invariant probability measure (called Haar measure) on G.

The theorem is true in much more generality (in particular, any compact Lie group
has a Haar probability measure), but we won’t worry about that, or the proof of the the-
orem. Also, in general one has to worry about invariance under left-translation or right-
translation, since they could be different. In the case of compact Lie groups, left-invariance
implies right-invariance and vice versa, so I will rather casually just talk about “translation-
invariance” without specifying the side, and using both sides if it’s convenient.

Exercise 1.8.
1. Prove that a translation-invariant probability measure on O (n) is invariant under

transposition: if U is Haar-distributed, so is UT .
2. Prove that a translation-invariant probability measure on U (n) is invariant under

transposition and under conjugation: if U is Haar-distributed, so are both UT and
U∗.

The theorem above is an existence theorem which doesn’t itself tell us how to describe
Haar measure in specific cases. In the case of the circle, you already are very familiar with
the right measure: (normalized) arc length. That is, we measure an interval on the circle
by taking its length and dividing by 2π, and if we’re feeling fussy we turn the crank of
measure theory to get a bona fide probability measure.

In the case of the matrix groups, we will describe three rather different-seeming con-
structions that all lead back to Haar measure. We’ll specialize to the orthogonal group for
simplicity, but the constructions for the other groups are similar.
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The Riemannian approach
We’ve already observed that O (n) ⊆ Rn2 , and that it is a compact submanifold.

Quick Exercise 1.9. What is O (1)?

Incidentally, as you’ve just observed in the n = 1 case, O (n) is not a connected man-
ifold – it splits into two pieces: SO (n) and what’s sometimes called SO− (n), the set of
matrices U ∈ O (n) with det(U) = −1.

Exercise 1.10. Describe both components of O (2).

Because O (n) sits inside of the Euclidean matrix space Mn(R) (with the Hilbert-
Schmidt inner product), it has a Riemannian metric that it inherits from the Euclidean
metric. Here’s how that works: a Riemannian metric is a gadget that tells you how to take
inner products of two vectors which both lie in the tangent space to a manifold at a point.
For us, this is easy to understand, because our manifold O (n) lies inside Euclidean space:
to take the inner products of two tangent vectors at the same point, we just shift the two
vectors to be based at the origin, and then take a dot product the usual way. An important
thing to notice about this operation is that it is invariant under multiplication by a fixed
orthogonal matrix: if U ∈ O (n) is fixed and I apply the map TU from Lemma 1.6 (i.e.,
multiply by U ) to Mn(R) and then take the dot product of the images of two tangent vec-
tors, it’s the same as it was before. The base point of the vectors changes, but the fact that
TU is an isometry exactly means that their dot product stays the same. (Incidentally, this is
essentially the solution to the second half of part 3 of Exercise 1.5.)

Now, on any Riemannian manifold, you can use the Riemannian metric to define a
natural notion of volume, which you can write a formula for in coordinates if you want.
The discussion above means that the volume form we get on O (n) is translation-invariant;
that is, it’s Haar measure.

An explicit geometric construction
Recall that Lemma 1.1 said that U was an orthogonal matrix if and only if its columns were
orthonormal. One way to construct Haar measure on O (n) is to add entries to an empty
matrix column by column (or row by row), as follows. First choose a random vector U1

uniformly from the sphere Sn−1 ⊆ Rn (that is, according to the probability measure defined
by normalized surface area). Make U1 the first column of the matrix; by construction,
‖U1‖ = 1. The next column will need to be orthogonal to U1, so consider the unit sphere
in the orthogonal complement of U1; that is, look at the submanifold of Rn defined by(

U⊥1
)
∩ Sn−1 =

{
x ∈ Rn : ‖x‖ = 1, 〈x, U1〉 = 0

}
.

QA1.9:{±1}
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This is just a copy of the sphere Sn−2 sitting inside a (random) n − 1-dimensional sub-
space of Rn, so we can choose a random vector U2 ∈

(
U⊥1
)
∩ Sn−1 according to nor-

malized surface area measure, and let this be the second column of the matrix. Now we
continue in the same way; we pick each column to be uniformly distributed in the unit
sphere of vectors which are orthogonal to each of the preceding columns. The resulting

matrix

 | |
U1 . . . Un
| |

 is certainly orthogonal, and moreover, it turns out that is also Haar-

distributed.
Observe that if M is a fixed orthogonal matrix, then

M

 | |
U1 . . . Un
| |

 =

 | |
MU1 . . . MUn
| |

 .
So the first column of M

 | |
U1 . . . Un
| |

 is constructed by choosing U1 uniformly from

Sn−1 and then multiplying by M . But M ∈ O (n) means that M acts as a linear isometry
of Rn, so it preserves surface area measure on Sn−1. (If you prefer to think about calculus,
if you did a change of variables y = Mx, where x ∈ Sn−1, then you would have y ∈ Sn−1

too and the Jacobian of the change of variables is |det(M)| = 1.) That is, the distribution
of MU1 is exactly uniform on Sn−1.

Now, since M is an isometry, 〈MU2,MU1〉 = 0 and, by exactly the same argument as
above, MU2 is uniformly distributed on

(MU1)⊥ ∩ Sn−1 := {x ∈ Rn : |x| = 1, 〈MU1, x〉 = 0} .

So the second column of M
[
U1 . . . Un

]
is distributed uniformly in the unit sphere of the

orthogonal complement of the first column.
Continuing the argument, we see that the distribution of M

[
U1 . . . Un

]
is exactly the

same as the distribution of
[
U1 . . . Un

]
, so this construction is left-invariant. By uniqueness

of Haar-measure, this means that our construction is Haar measure.

The Gaussian approach
This is probably the most commonly used way to describe Haar measure, and also one
that’s easy to implement on a computer.

We start with an empty n×nmatrix, and fill it with independent, identically distributed
(i.i.d.) standard Gaussian entries {xi,j} to get a random matrix X . That is, the joint density
(with respect to

∏n
i,j=1 dxij) of the n2 entries of X is given by

1

(2π)n2

n∏
i,j=1

e−
x2ij
2 =

1

(2π)n2 exp

{
−1

2

n∑
i,j=1

x2
i,j

}
.
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The distribution of X is invariant under multiplication by an orthogonal matrix: by the
change of variables yij :=

[
MX

]
ij

=
∑n

k=1 Mikxkj , the density of the entries of MX

with respect to
∏
dyij is

| det(M−1)|
(2π)2

exp

{
−1

2

n∑
i,j=1

[M−1y]2ij

}
=

1

(2π)n2 exp

{
−1

2

n∑
i,j=1

y2
i,j

}
,

since M−1 is an isometry.
So filling a matrix with i.i.d. standard Gaussians gives us something invariant under

left-multiplication by an orthogonal matrix, but this isn’t a Haar-distributed orthogonal
matrix, because it’s not orthogonal! To take care of that, we make it orthogonal: we use
the Gram-Schmit process. Fortunately, performing the Gram-Schmidt process commutes
with multiplication by a fixed orthogonal matrix M : let Xi denote the columns of X .
Then, for example, when we remove the X1 component from X2, we replace X2 with
X2 − 〈X1, X2〉X2. If we then multiply by M , the resulting second column is

MX2 − 〈X1, X2〉MX2.

If, on the other hand, we first multiplyX byM , we have a matrix with columnsMX1, . . . ,MXn.
If we now remove the component in the direction of column 1 from column 2, our new col-
umn 2 is

MX2 − 〈MX1,MX2〉MX1 = MX2 − 〈X1, X2〉MX2,

since M is an isometry.
What we have then, is that if we fill a matrix X with i.i.d. standard normal random

variables, perform the Gram-Schmidt process, and then multiply by M , that is the same
as applying the Gram-Schmidt process to MX , which we saw above has the same distri-
bution as X itself. In other words, the probability measure constructed this way gives us
a random orthogonal matrix whose distribution is invariant under left-multiplication by a
fixed orthogonal matrix: we have constructed Haar measure (again).

Note: if you’re more familiar with the terminology, it may help to know that what we
checked above is that if you fill a matrix with i.i.d. standard Gaussian entries and write its
QR-decomposition, the Q part is exactly a Haar-distributed random orthogonal matrix.

Haar measure on SO (n) and SO− (n)

The constructions above describe how to choose a uniform random matrix from O (n), but
as we noted above, O (n) decomposes very neatly into two pieces, those matrices with
determinant 1 (SO (n)) and those with determinant −1 (SO− (n)). Theorem 1.7 says that
SO (n) has a unique translation-invariant probability measure; it’s easy to see that it’s ex-
actly what you get by restricting Haar measure on O (n).
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There is also a measure that we call Haar measure on SO− (n), which is what you get
by restricting Haar measure from O (n). The set SO− (n) isn’t a group, it’s a coset of
the subgroup SO (n) in the group O (n); we continue to use the name Haar measure on
SO− (n) even though we don’t have a translation-invariant measure on a group, because
what we have instead is a probability measure which is invariant under translation within
SO− (n) by any matrix from SO (n). There is a neat connection between Haar measure
on SO (n) and Haar measure on SO− (n): if U is Haar-distributed in SO (n) and Ũ is any
fixed matrix in SO− (n), then ŨU is Haar-distributed in SO− (n).

Exercise 1.11. Carefully check the preceding claim.

1.3 Who cares?
“Random matrices” are nice buzz-words, and orthogonal or unitary matrices sound natural
enough, but why invest one’s time and energy in developing a theory about these objects?

Much of the original interest in random matrices from the compact classical groups
(mainly the unitary group) stems from physics. One big idea is that, in quantum mechan-
ics, the energy levels of a quantum system are described by the eigenvalues of a Hermitian
operator (the Hamiltonian of the system). If we can understand some important things
about the operator by considering only finitely many eigenvalues (that is, working on a
finite-dimensional subspace of the original domain), we’re led to think about matrices.
These matrices are too complicated to compute, but a familiar idea from statistical physics
was that under such circumstances, you could instead think probabilistically – consider a
random matrix assumed to have certain statistical properties, and try to understand what the
eigenvalues are typically like, and hope that this is a good model for the energy levels of
quantum systems. Some of the most obvious statistical models for random matrices lacked
certain symmetries that seemed physically reasonable, so Freeman Dyson proposed con-
sidering random unitary matrices. They were not meant to play the role of Hamiltonians,
but rather to encode the same kind of information about the quantum system, at least in an
approximate way.

A somewhat more recent and initially rather startling connection is between random
unitary matrices and number theory, specifically, properties of the zeroes of the Riemann
zeta function. Remarkably enough, this connection was noticed through physics. The
story goes that Hugh Montgomery gave a talk at Princeton about some recent work on
conjectures about the pair correlations of the zeroes of the Riemann zeta function. Dyson
couldn’t attend, but met Montgomery for tea, and when Montgomery started to tell Dyson
his conjecture, Dyson said, “Do you think it’s this?” and proceeded to write Montgomery’s
conjecture on the board. He explained that this was what you would get if the eigenvalues
of a large random unitary matrix could model the zeroes of zeta. Since then, a huge liter-
ature has been built up around understanding the connection and using it and facts about
random unitary matrices in order to understand the zeta zeroes. There’s been far too much
activity to pretend to survey here, but some notable developments were Odlyzko’s compu-
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tational work, which shows that the connection between zeta zeroes and eigenvalues passes
every statistical test anyone’s thrown at them (see in particular the paper of Persi Diaconis
and Marc Coram), Keating and Snaith’s suggestion that the characteristic polynomial of a
random unitary matrix can model zeta itself, which has led to a remarkable series of con-
jectures on the zeta zeroes, and Katz and Sarnak’s discovery (and rigorous proof!) of the
connection between the eigenvalues of random matrices from the compact classical groups
and other L-functions.

Finally, we’ve talked already about some geometric properties of orthogonal and uni-
tary matrices; they encode orthonormal bases of Rn and Cn. As such, talking about ran-
dom orthogonal and unitary matrices lets us talk about random bases and, maybe more
importantly, random projections onto lower-dimensional subspaces. This leads to beauti-
ful results about the geometry of high-dimensional Euclidean space, and also to important
practical applications. In Lecture 4, we’ll see how deep facts about Haar measure on the
orthogonal group yield powerful randomized algorithms in high-dimensional data analysis.



Lecture 2

Some properties of Haar measure on the
compact classical matrix groups

2.1 Some simple observations
There are a few useful and important properties of Haar measure on O (n), etc., that we can
get easily from translation invariance and the orthogonality (unitarity? unitariness?) of the
matrices themselves. The first was actually Exercise 1.8, which said that the distribution
of a Haar random matrix is invariant under taking the transpose (and conjugate transpose).
The next is an important symmetry of Haar measure which will come up constantly.

Lemma 2.1. Let U be distributed according to Haar measure in G, where G is one of
O (n), U (n), SO (n), and SU (n). Then all of the entries of U are identically distributed.

Proof. Recall that permutations can be encoded by matrices: to a permutation σ ∈ Sn,
associate the matrix Mσ with entries in {0, 1}, such that mij = 1 if and only if σ(i) = j.
Such a permutation matrixMσ is inG (check!). Moreover, multiplication on the left byMσ

permutes the rows by σ and multiplication on the right byMσ permutes the columns by σ−1.
We can thus move any entry of the matrix into, say, the top-left corner by multiplication on
the right and/or left by matrices in G. By the translation invariance of Haar measure, this
means that all entries have the same distribution.

Exercise 2.2. If U is Haar-distributed in U (n), the distributions of Re(U11) and Im(U11)
are identical.

In addition to making the distribution of our random matrices reassuringly symmetric,
the lemma makes some computations quite easy. For example, now that we know that the
entries of U all have the same distributions, a natural thing to do is to try to calculate a few
things like Eu11 and Var(u11). We could use one of the contructions from the last lecture,
but that would be overkill; putting the symmetries we have to work is much easier, as in
the following example.

11
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Example. Let U be Haar distributed in G, for G as above.
1. E[u11] = 0: note that Haar measure is invariant under multiplication on the left by

−1 0 0
0 1

. . .
0 1

 ;

doing so multiplies the top row (so in particular u11) of U by −1, but doesn’t change
the distribution of the entries. So u11

d
= −u11 ( d= means “equals in distribution”),

and thus E[u11] = 0.
2. E|u11|2 = 1

n
: because U ∈ G, we know that

∑n
j=1 |u1j|2 = 1, and because all the

entries have the same distribution, we can write

E|u11|2 =
1

n

n∑
j=1

E|u1j|2 =
1

n
E

(
n∑
j=1

|u1j|2
)

=
1

n
.

Exercise 2.3. For U =
[
uij
]n
j=1

, compute Cov (uij, uk`) and Cov
(
u2
ij, u

2
k`

)
for all i, j, k, `.

Understanding the asymptotic distribution of the individual entries of Haar-distributed
matrices is of course more involved than just calculating the first couple of moments, but
follows from classical results. Recall that our geometric construction of Haar measure
on O (n) involves filling the first column with a random point on the sphere (the same
construction works for U (n), filling the first column with a uniform random point in the
complex sphere {z ∈ Cn : |z| = 1}.) That is, the distribution of u11 is exactly that of x1,
where x = (x1, . . . , xn) is a uniform random point of Sn−1 ⊆ Rn. The asymptotic distri-
bution of a single coordinate of a point on the sphere has been known for over a hundred
years; the first rigorous proof is due to Borel in 1906, but it was recognized by Maxwell
and others decades earlier. It is also often referred to as the “Poincaré limit”, although ap-
parently without clear reasons (Diaconis and Freedman’s paper which quantifies this result
has an extensive discussion of the history.)

Theorem 2.4 (Borel’s lemma). Let X = (X1, . . . , Xn) be a uniform random vector in
Sn−1 ⊆ Rn. Then

P
[√
nX1 ≤ t

] n→∞−−−→ 1√
2π

∫ t

−∞
e−

x2

2 dx;

that is,
√
nX1 converges weakly to a Gaussian random variable, as n→∞.

There are various ways to prove Borel’s lemma; one way is by the method of moments.
The following proposition taken from [?] gives a general formula for integrating polyno-
mials over spheres.
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Proposition 2.5. Let P (x) = |x1|α1|x2|α2 · · · |xn|αn . Then if X is uniformly distributed on√
nSn−1,

E
[
P (X)

]
=

Γ(β1) · · ·Γ(βn)Γ(n
2
)n( 1

2

∑
αi)

Γ(β1 + · · ·+ βn)πn/2
,

where βi = 1
2
(αi + 1) for 1 ≤ i ≤ n and

Γ(t) =

∫ ∞
0

st−1e−sds = 2

∫ ∞
0

r2t−1e−r
2

dr.

(The proof is essentially a reversal of the usual trick for computing the normalizing
constant of the Gaussian distribution – it’s not a bad exercise to work it out.)

Proof of Borel’s lemma by moments. To prove the lemma, we need to show that if we con-
sider the sequence of random variables Yn distributed as the first coordinate of a uniform
random point on

√
nSn−1, that for m fixed,

lim
n→∞

E
[
Y m
n

]
= E

[
Zm
]
, (2.1)

where Z is a standard Gaussian random variable. Recall that the moments of the standard
Gaussian distribution are

E
[
Zm
]

=

{
(m− 1)(m− 3)(m− 5) . . . (1), m = 2k;

0, m = 2k + 1.
(2.2)

The expression (m − 1)(m − 3) . . . (1) is sometimes called “(m − 1) skip-factorial” and
denoted (m− 1)!!.

To prove (2.1), first note that it follows by symmetry that E[X2k+1
1 ] = 0 for all k ≥ 0.

Next, specializing Proposition 2.5 to P (X) = X2k
1 gives that the even moments of X1 are

E
[
X2k

1

]
=

Γ
(
k + 1

2

)
Γ
(

1
2

)n−1
Γ
(
n
2

)
nk

Γ
(
k + n

2

)
π
n
2

.

Using the functional equation Γ(t + 1) = tΓ(t) and the fact that Γ
(

1
2

)
=
√
π, this

simplifies to

E
[
X2k

1

]
=

(2k − 1)(2k − 3) . . . (1)nk

(n+ 2k − 2)(n+ 2k − 4) . . . (n)
. (2.3)

Equation (2.1) follows immediately.

We’ve learned a lot in the last century, even about this rather classical problem. In par-
ticular, we can give a much more precise statement that quantifies the central limit theorem
of Borel’s lemma. In order to do this, we will first need to explore some notions of distance
between measures.
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2.2 Metrics on probability measures
What is generally meant by quantifying a theorem like Borel’s lemma is to give a rate of
convergence of Yn to Z in some metric; that is, to give a bound in terms of n on the distance
between Yn and Z, for some notion of distance. The following are some of the more widely
used metrics on probability measures on Rn. The definitions can be extended to measures
on other spaces, but for now we’ll stick with Rn.

1. Let µ and ν be probability measures on Rn. The total variation distance between µ
and ν is defined by

dTV (µ, ν) := 2 sup
A⊆Rn

|µ(A)− ν(A)| ,

where the supremum is over Borel measurable sets. Equivalently, one can define

dTV (µ, ν) := sup
f :Rn→R

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ,
where the supremum is over functions f which are continuous, such that ‖f‖∞ ≤ 1.
The total variation distance is a very strong metric on probability measures; in par-
ticular, you cannot approximate a continuous distribution by a discrete distribution
in total variation.

Exercise 2.6.
(a) Prove that these two definitions are equivalent.

Hint: The Hahn decomposition of Rn corresponding to the signed measure µ−ν
is useful here.

(b) Prove that the total variation distance between a discrete distribution and a con-
tinuous distribution is always 2.

2. The bounded Lipschitz distance is defined by

dBL(µ, ν) := sup
‖g‖BL≤1

∣∣∣∣∫ g dµ−
∫
g dν

∣∣∣∣ ,
where the bounded-Lipschitz norm ‖g‖BL of g : Rn → R is defined by

‖g‖BL := max

{
‖g‖∞ , sup

x 6=y

|g(x)− g(y)|
‖x− y‖

}
and ‖·‖ denotes the standard Euclidean norm on Rn. The bounded-Lipschitz distance
is a metric for the weak topology on probability measures (see, e.g., [?, Theorem
11.3.3]).
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3. The Lp Wasserstein distance for p ≥ 1 is defined by

Wp(µ, ν) := inf
π

[∫
‖x− y‖p dπ(x, y)

] 1
p

,

where the infimum is over couplings π of µ and ν; that is, probability measures π on
R2n such that π(A× Rn) = µ(A) and π(Rn × B) = ν(B). The Lp Wasserstein dis-
tance is a metric for the topology of weak convergence plus convergence of moments
of order p or less. (See [?, Section 6] for a proof of this fact, and a lengthy discus-
sion of the many fine mathematicians after whom this distance could reasonably be
named.)

When p = 1, there is the following alternative formulation:

W1(µ, ν) := sup
|f |L≤1

∣∣∣∣∫ f dµ−
∫
f dν

∣∣∣∣ ,
where |f |L denotes the Lipschitz constant of f . That this is the same thing as W1

defined above is the Kantorovich-Rubenstein theorem.

As a slight extension of the notation defined above, we will also write things like
dTV (X, Y ), where X and Y are random vectors in Rn, to mean the total variation distance
between the distributions of X and Y .

2.3 More refined properties of the entries of Haar-distributed
matrices

We saw in Section 2.1 that ifU =
[
uij
]n
i,j=1

is a Haar-distributed random orthogonal matrix,
then the asymptotic distribution of

√
nu11 is the standard Gaussian distribution. Moreover,

this followed from the classical result (Borel’s lemma) that the first coordinate of a uniform
random point on

√
nSn−1 converges weakly to Gaussian, as n → ∞. Borel’s lemma has

been strengthened considerably, as follows.

Theorem 2.7 (Diaconis-Freedman). Let X be a uniform random point on
√
nSn−1, for

n ≥ 5. Then if Z is a standard Gaussian random variable,

dTV (X1, Z) ≤ 4

n− 4
.

This theorem is fine as far as it goes (it is in fact sharp in the dependence on n), but
it’s very limited as a means of understanding Haar measure on O (n), since it’s only about
the distribution of individual entries and not about their joint distributions. You will see (or
already have seen) in Exercise 2.3 that the covariances between the squares of the entries are
quite small; much smaller than the variances of individual entries. It’s natural to conjecture
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then that you could approximate some of the entries of a large random orthogonal matrix
by a collection of independent Gaussian random variables. Diaconis and Freedman in fact
showed rather more about the coordinates of a random point on the sphere:

Theorem 2.8 (Diaconis-Freedman). Let X be a uniform random point on
√
nSn−1, for

n ≥ 5, and let 1 ≤ k ≤ n− 4. Then if Z is a standard Gaussian random vector in Rk,

dTV
(
(X1, . . . , Xk), Z

)
≤ 2(k + 3)

n− k − 3
.

This means that one can approximate k entries from the same row or column of U by
independent Gaussian random variables, as long as k = o(n). Persi Diaconis then raised
the question: How many entries of U can be simultaneously approximated by independent
normal random variables? A non-sharp answer was given by Diaconis, Eaton and Lauritson
in [?]; the question was definitively answered (in two ways) by Tiefeng Jiang, as follows.

Theorem 2.9 (Jiang’s Theorem 1). Let {Un} be a sequence of random orthogonal matrices
with Un ∈ O (n) for each n, and suppose that pn, qn = o(

√
n). Let L(

√
nU(pn, qn))

denote the joint distribution of the pnqn entries of the top-left pn × qn block of
√
nUn, and

let Φ(pn, qn) denote the distribution of a collection of pnqn i.i.d. standard normal random
variables. Then

lim
n→∞

dTV (L(
√
nU(pn, qn)),Φ(pn, qn)) = 0.

That is, a pn × qn principle submatrix can be approximated in total variation by a
Gaussian random matrix, as long as pn, qn �

√
n. The theorem is sharp in the sense

that if pn ∼ x
√
n and qn ∼ y

√
n for x, y > 0, then dTV (L(

√
nU(pn, qn)),Φ(pn, qn)) does

not tend to zero.
As we said above, total variation distance is a very strong metric on the space of prob-

ability measures. Jiang also proved the following theorem, which says that if you accept
a much weaker notion of approximation, then you can approximate many more entries of
U by i.i.d. Gaussians. Recall that a sequence of random variables {Xn} tends to zero in
probability (denoted Xn

P−−−→
n→∞

0) if for all ε > 0,

lim
n→∞

P [|Xn| > ε] = 0.

Theorem 2.10 (Jiang’s Theorem 2). For each n, let Yn =
[
yij
]n
i,j=1

be an n × n matrix
of independent standard Gaussian random variables and let Γn =

[
γij
]n
i,j=1

be the matrix
obtained from Yn by performing the Gram-Schmidt process; i.e., Γn is a random orthogonal
matrix. Let

εn(m) = max
1≤i≤n,1≤j≤m

∣∣√nγij − yij∣∣.
Then

εn(mn)
P−−−→

n→∞
0

if and only if mn = o
(

n
log(n)

)
.
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That is, in an “in probability” sense, o
(

n2

log(n)

)
entries of U (so nearly all of them!) can

be simultaneously approximated by independent Gaussians.

2.4 A first look at eigenvalues
Suppose U is a random orthogonal or unitary matrix. Then U has eigenvalues (U is normal
by definition), all of which lie on the unit circle S1 ⊆ C. Since U is random, its set of
eigenvalues is a random point process; that is, it is a collection of n random points on S1.
The eigenvalue process of a random orthogonal or unitary matrix has many remarkable
properties, the first of which is that there is an explicit formula (due to H. Weyl) for its
density. The situation is simplest for random unitary matrices.

Lemma 2.11 (Weyl density formula). The unordered eigenvalues of an n × n random
unitary matrix have eigenvalue density

1

n!(2π)n

∏
1≤j<k≤n

|eiθj − eiθk |2,

with respect to dθ1 · · · dθn on (2π)n.
That is, for any central function g : U (n) → R (g is central if g(U) = g(V UV ∗) for

any U, V ∈ U (n), or alternatively, if g depends on U only through its eigenvalues),∫
U(n)

gdHaar =
1

n!(2π)n

∫
[0,2π)n

g̃(θ1, . . . , θn)
∏

1≤j<k≤n

|eiθj − eiθk |2dθ1 · · · dθn,

where g̃ : [0, 2π)n → R is the expression of g(U) as a function of the eigenvalues of U .
Note that any g̃ arising in this way is therefore invariant under permutations of coordinates
on [0, 2π)n: g̃(θ1, . . . , θn) = g̃(θσ(1), . . . , θσ(n)) for any σ ∈ Sn.

More concretely, let {eiφj}nj=1 be the eigenvalues of a Haar-distributed random orthog-
onal matrix, with 0 ≤ φ1 < φ2 < · · · < φn < 2π. Let σ ∈ Sn be a random permutation,
independent of U . Then for any measurable A ⊆ [0, 2π)n,

P
[
(eiφσ(1) , . . . , eiφσ(n)) ∈ A

]
=

1

n!(2π)n

∫
· · ·
∫

A

∏
j<k

|eiθj − eiθk |2dθ1 . . . dθn.

Equivalently, if A is a measureable subset of {0 ≤ θ1 < θ2 < · · · < θn < 2π} ⊆
[0, 2π)n, then

P
[
(eiφ1 , . . . , eiφn) ∈ A

]
=

1

(2π)n

∫
· · ·
∫

A

∏
j<k

|eiθj − eiθk |2dθ1 . . . dθn.
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Figure 2.1: On the left are the eigenvalues of a 100 × 100 random unitary matrix; on the
right are 100 i.i.d. uniform random points. Figures courtesy of E. Rains.

The factor
∏

1≤j<k≤n |eiθj − eiθk |2 is the norm-squared of a Vandermonde determinant,
which means one can also write it as∏

1≤j<k≤n

|eiθj − eiθk |2 =
∣∣∣det

[
eiθj(k−1)

]n
j,k=1

∣∣∣2 =
∑
σ,τ∈Sn

sgn(στ)
∏

1≤k≤n

eiθk(σ(k)−τ(k)).

(2.4)

This last expression can be quite useful in computations.

Either expression for the eigenvalue density is pretty hard to look at, but one thing to
notice right away is that for any given pair (j, k), |eiθk − eiθj |2 is zero if θj = θk (and small
if they are close), but |eiθk − eiθj |2 is 4 if θj = θk + π (and in that neighborhood if θj and
θk are roughly antipodal). This produces the effect known as “eigenvalue repulsion”: the
eigenvalues really want to spread out. You can see this pretty dramatically in pictures, even
for matrices which aren’t really that large.

In the picture on the right in Figure 2.4, where 100 points were dropped uniformly and
independently, there are several large clumps of points close together, and some biggish
gaps. In the picture on the right, this is much less true: the eigenvalues are spread pretty
evenly, and there are no big clumps.

Things are similar for the other matrix groups, just a little fussier. Each matrix in
SO (2N + 1) has 1 as an eigenvalue, each matrix in SO− (2N + 1) has −1 as an eigen-
value, and each matrix in SO− (2N + 2) has both−1 and 1 as eigenvalues; we refer to all of
these as trivial eigenvalues. The remaining eigenvalues of matrices in SO (N) or Sp (2N)
occur in complex conjugate pairs. For this reason, when discussing SO (N), SO− (N), or
Sp (2N), the eigenvalue angles corresponding to the eigenvalues in the open upper half-
circle are the nontrivial ones and we generally restrict our attention there. For U (N), all
the eigenvalue angles are considered nontrivial; there are no automatic symmetries in the
eigenvalue process in this case.
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In the case of the orthogonal and symplectic groups, one can give a similar formula for
the density of the non-trivial eigenangles as in the unitary case, although it is not as easy to
work with because it doesn’t take the form of a norm squared. The densities are as follows.

Theorem 2.12. Let U be a Haar-distributed random matrix in S, where S is one of
SO (2n+ 1), SO (2n), SO− (2n+ 1), SO− (2n+ 2), Sp (2n). Then a function g of U
which is invariant under conjugation of U by a fixed orthogonal (in all but the last case) or
symplectic (in the last case) matrix is associated as above with a function g̃ : [0, π)n → R
(of the non-trivial eigenangles) which is invariant under permutations of coordinates, and∫

G

gdHaar =

∫
[0,π)n

g̃dµG,

where the measures µG on [0, π)n have densities with respect to dθ1 · · · dθn as follows.

G µG

SO (2n)
2

n!(2π)n

∏
1≤j<k≤n

(
2 cos(θk)− 2 cos(θj)

)2

SO (2n+ 1) , SO− (2n+ 1)
2n

n!πn

∏
1≤j≤n

sin2

(
θj
2

) ∏
1≤j<k≤n

(
2 cos(θk)− 2 cos(θj)

)2

Sp (2n) ,SO− (2N + 2)
2n

n!πn

∏
1≤j≤n

sin2 (θj)
∏

1≤j<k≤n

(
2 cos(θk)− 2 cos(θj)

)2

One of the technical tools that is commonly used to study the ensemble of eigenvalues
of a random matrix is the empirical spectral measure. Given a random matrix U with
eigenvalues λ1, . . . , λn, the empirical spectral measure of U is the random measure

µU :=
1

n

n∑
j=1

δλj .

The empirical spectral measure is a handy way to encode the ensemble of eigenvalues.
In particular, it lets us formalize the idea that the eigenvalues are evenly spread out on
the circle, and indeed more so than i.i.d. points are, by comparing the empirical spectral
measure to the uniform measure on the circle. In dealing with convergence of random
measures, one notion that comes up a lot is that of convergence “weakly in probability”,
although it is seldom actually defined. This is an unfortunate practice, with which we will
break. However, we will specialize to the situation that the random measures are defined
on S1, since that is where our empirical spectral measures live.

Definition. A sequence of random probability measures µn on S1 converge weakly in prob-
ability to a measure µ on S1 (written µn

P
=⇒ µ) if for each continuous f : S1 → R,∫

fdµn
P−−−→

n→∞

∫
fdµ.
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There are many equivalent viewpoints:

Lemma 2.13. For j ∈ Z and µ a probability measure on [0, 2π), let µ̂(j) =
∫ 2π

0
eijθdµ(θ)

denote the Fourier transform of µ at j. The following are equivalent:
1. µn

P
=⇒ µ;

2. for each j ∈ Z, µ̂n(j)
P−−−→

n→∞
µ̂(j);

3. for every subsequence n′ in N there is a further subsequence n′′ such that with prob-
ability one, µn′′ =⇒ µ as n→∞.

The first result showing that the eigenvalues of a Haar-distributed matrix evenly fill out
the circle was proved by Diaconis and Shahshahani.

Theorem 2.14 (Diaconis–Shahshahani). Let {Gn} be one of the sequences {O (n)}, {U (n)},
or {Sp (2n)} of groups, and let µn be the empirical spectral measure of Un, where Un is
Haar-distributed in Gn. Then as n → ∞, µn converges, weakly in probability, to the
uniform measure ν on S1.

In fact, it is possible to show that the measures µn converge quite quickly to the uni-
form measure on the circle, and indeed more quickly than the empirical measure of n i.i.d.
uniform points on the circle.

Theorem 2.15 (E. Meckes-M. Meckes). Suppose that for each n, Un is Haar distributed in
Gn, where Gn is one of O (n), SO (n), SO− (n), U (n), SU (n), or Sp (2n). Let ν denote
the uniform measure on S1. There is an absolute constant C such that with probability 1,
for all sufficiently large n, and all 1 ≤ p ≤ 2,

Wp(µn, ν) ≤ C

√
log(n)

n
.

By way of comparison, it is known (cf. [?]) that if µn is the empirical measure of n i.i.d.
uniform points on S1, then Wp(µn, ν) is typically of order 1√

n
.

The above result gives one explicit demonstration that there is important structure to
the eigenvalue processes of these random matrices; in at least some ways, they are quite
different from collections of independent random points. There are indeed many beautiful
patterns to be found; a particularly striking example is the following.

Theorem 2.16 (Rains). Let m ∈ N be fixed and let m̃ := min{m,N}. If ∼ denotes
equality of eigenvalue distributions, then

U (N)m ∼
⊕

0≤j<m̃

U
(⌈

N − j
m̃

⌉)
That is, if U is a uniform N × N unitary matrix, the eigenvalues of Um are distributed as
those of m̃ independent uniform unitary matrices of sizes⌊

N

m̃

⌋
:= max

{
k ∈ N | k ≤ N

m̃

}
and

⌈
N

m̃

⌉
:= min

{
k ∈ N | k ≥ N

m̃

}
,
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such that the sum of the sizes of the matrices is N . In particular, if m ≥ N , the eigenvalues
of Um are distributed exactly as N i.i.d. uniform points on S1.

We conclude this lecture by mentioning a special algebraic structure of the eigenvalue
processes of the compact classical groups. These processes are what’s known as determi-
nantal point processes. The definition is a little complicated, but it turns out that processes
that satisfy it have very special (very useful) properties, as we’ll see.

Firstly, a point process X in a locally compact Polish space Λ is a random discrete
subset of Λ. Abusing notation, we denote by X(D) the number of points of X in D. A
point process may or may not have k-point correlation functions, defined as follows.

Definition. For a point process X in Λ, suppose there exist functions ρk : Λk → [0,∞)
such that, for pairwise disjoint subsets D1, . . . , Dk ⊆ Λ,

E

[
k∏
j=1

X(Di)

]
=

∫
· · ·
∫

D1 Dk

ρk(x1, . . . , xk)dx1 · · · dxk.

Then the ρk are called the k-point correlation functions (or joint intensities) of X.

A determinantal point process is a point process whose k-point correlation functions
have a special form:

Definition. Let K : Λ× Λ→ [0, 1]. A point process X is a determinantal point process
with kernel K if for all k ∈ N,

ρk(x1, . . . , xk) = det
[
K(xi, xj)

]k
i,j=1

.

Proposition 2.17. The nontrivial eigenvalue angles of uniformly distributed random matri-
ces in any of SO (N), SO− (N), U (N), Sp (2N) are a determinantal point process, with
respect to uniform measure on Λ, with kernels as follows.

KN(x, y) Λ

SO (2N) 1 +
N−1∑
j=1

2 cos(jx) cos(jy) [0, π)

SO (2N + 1) ,SO− (2N + 1)
N−1∑
j=0

2 sin

(
(2j + 1)x

2

)
sin

(
(2j + 1)y

2

)
[0, π)

U (N)
N−1∑
j=0

eij(x−y) [0, 2π)

Sp (2N) , SO− (2N + 2)
N∑
j=1

2 sin(jx) sin(jy) [0, π)
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For some purposes, the following alternatives can be more convenient. In all but the
unitary case, they are the same functions; for the unitary case, the kernels are different but
define the same point processes.

First define

SN(x) :=

{
sin
(
Nx
2

)
/ sin

(
x
2

)
if x 6= 0,

N if x = 0.

Proposition 2.18. The nontrivial eigenvalue angles of uniformly distributed random matri-
ces in any of SO (N), SO− (N), U (N), Sp (2N) are a determinantal point process, with
respect to uniform measure on Λ, with kernels as follows.

LN(x, y) Λ

SO (2N)
1

2

(
S2N−1(x− y) + S2N−1(x+ y)

)
[0, π)

SO (2N + 1) ,SO− (2N + 1)
1

2

(
S2N(x− y)− S2N(x+ y)

)
[0, π)

U (N) SN(x− y) [0, 2π)

Sp (2N) ,SO− (2N + 2)
1

2

(
S2N+1(x− y)− S2N+1(x+ y)

)
[0, π)

One thing that is convenient about determinantal point processes is that there are easy-
to-use (in principle, at least) formulas for computing things like means and variances of the
number of points in a given set, such as those given in the following lemma.

Lemma 2.19. Let K : I × I → R be a continuous kernel on an interval I such that the
corresponding operator

K(f)(x) :=

∫
I

K(x, y)f(y)dµ(y)

on L2(µ), where µ is the uniform measure on I , is an orthogonal projection. For a subin-
terval D ⊆ I , denote by ND the number of particles of the determinantal point process
with kernel K which lie in D. Then

END =

∫
D

K(x, x) dµ(x)

and
VarND =

∫
D

∫
I\D

K(x, y)2 dµ(x) dµ(y).



Lecture 3

Concentration of Haar measure

3.1 The concentration of measure phenomenon
The phenomenon of concentration of measure has poked its head out of the water in many
places in the history of mathematics, but was first explicitly described and used by Vitali
Milman in the 1970’s in his probabilistic proof of Dvoretzky’s theorem. Milman strongly
advocated that the phenomenon was both fundamental and useful, and its study and appli-
cation has become a large and influential field since then. The basic idea is that functions
with small local fluctuations are often essentially constant, where “essentially” means that
we consider a function on a probability space (i.e., a random variable) and it is close to a
particular value with probability close to 1.

An example of a concentration phenomenon in classical probability theory is the fol-
lowing.

Theorem 3.1 (Bernstein’s inequality). Let {Xj}nj=1 be independent random variables such

that, for each i, |Xj| ≤ 1 almost surely. Let σ2 = Var
(∑n

j=1Xj

)
. Then for all t > 0,

P

[∣∣∣∣∣ 1n
n∑
j=1

Xj − E

(
1

n

n∑
j=1

Xj

)∣∣∣∣∣ > t

]
≤ C exp

(
−min

{
n2t2

2σ2
,
nt

2

})
.

That is, the average of independent bounded random variables is essentially constant,
in that it is very likely to be close to its mean. We can reasonably think of the average of
n random variables as a statistic with small local fluctuations, since if we just change the
value of one (or a few) of the random variables, the average can only change on the order
1
n

.
In a more geometric context, we have the following similar statement about Lipschitz

functions of a random point on the sphere.

Theorem 3.2 (Lévy’s lemma). Let f : Sn−1 → R be Lipschitz with Lipschitz constant
L, and let X be a uniform random vector in Sn−1. Let M be the median of f ; that is,

23
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P[f(X) ≥M ] ≥ 1
2

and P[f(X) ≤M ] ≥ 1
2
. Then

P
[∣∣f(X)−M

∣∣ ≥ Lt
]
≤ 2e−(n−2)t2 .

Again, this says that if the local fluctions of a function on the sphere are controlled (the
function is Lipschitz), then the function is essentially constant.

We often prefer to state concentration results about the mean rather than the median, as
follows.

Corollary 3.3. Let f : Sn−1 → R be Lipschitz with Lipschitz constant L, and let X be
a uniform random vector in Sn−1. Then for Mf denoting the median of f with respect to
uniform measure on Sn−1, |Ef(X)−Mf | ≤ L

√
π
n−2

and

P[|f(X)− Ef(X)| ≥ Lt] ≤ eπ−
nt2

4 .

That is, a Lipschitz function on the sphere is essentially constant, and we can take that
constant value to be either the median or the mean of the function.

Proof. First note that Lévy’s lemma and Fubini’s theorem imply that∣∣Ef(X)−Mf

∣∣ ≤ E
∣∣f(X)−Mf

∣∣
=

∫ ∞
0

P
[∣∣f(X)−Mf

∣∣ > t
]
dt ≤

∫ ∞
0

2e−
(n−2)t2

L2 dt = L

√
π

n− 2
.

If t > 2
√

π
n−2

, then

P [|f(X)− Ef(X)| > Lt] ≤ P [|f(X)−Mf | > Lt− |Mf − Ef(X)|]

≤ P
[
|f(X)−Mf | > L

(
t−
√

π

n− 2

)]
≤ 2e−

(n−2)t2

4 .

On the other hand, if t ≤ 2
√

π
n−2

, then

eπ−
(n−2)t2

4 ≥ 1,

so the statement holds trivially.

3.2 Log-Sobolev inequalities and concentration
Knowing that a metric probability space possesses a concentration of measure property
along the lines of Lévy’s lemma opens many doors; however, it is not a priori clear how to
show that such a property holds or to determine what the optimal (or even good) constants
are. In this section we discuss one approach to obtaining measure concentration, which is
in particular one way to prove Lévy’s lemma.

We begin with the following general definitions for a metric space (X, d) equipped with
a Borel probability measure P.
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Definition.
1. The entropy of a measurable function f : X → [0,∞) with respect to P is

Ent(f) := E
[
f log(f)

]
− (Ef) log (Ef) .

2. For a locally Lipschitz function g : X → R,

|∇g| (x) := lim sup
y→x

|g(y)− g(x)|
d(y, x)

.

Exercise 3.4. Show that Ent(f) ≥ 0 and that for c > 0, Ent(cf) = cEnt(f).

Definition. We say that (X, d,P) satisfies a logarithmic Sobolev inequality (or log-Sobolev
inequality or LSI) with constant C > 0 if, for every locally Lipschitz f : X → R,

Ent(f 2) ≤ 2CE
(
|∇f |2

)
. (3.1)

The reason for our interest in log-Sobolev inequalities is that they imply measure con-
centration for Lipschitz functions, via the “Herbst argument”. The argument was outlined
by Herbst in a letter to Len Gross, who was studying something called “hypercontractiv-
ity”. The argument made it into folklore, and then books (e.g., [?]) without most of the
people involved ever having seen the letter (Gross kept it, though, and if you ask nicely
he’ll let you see it).

Specifically, the following result holds.

Theorem 3.5. Suppose that (X, d,P) satisfies a log-Sobolev inequality with constant C >
0. Then for every 1-Lipschitz function F : X → R, E|F | <∞, and for every r ≥ 0,

P
[∣∣F − EµF

∣∣ ≥ r
]
≤ 2e−r

2/2C .

Proof (the Herbst argument).
We begin with the standard observation that for any λ > 0,

P [F ≥ EF + r] = P
[
eλF−EλF ≥ eλr

]
≤ e−λrEeλF−EλF , (3.2)

assuming that EeλF <∞. For now, assume that F is bounded as well as Lipschitz, so that
the finiteness is assured. Also, observe that we can always replace F with F − EF , so we
may assume that EF = 0.

That is, given a bounded, 1-Lipschitz function F : X → R with EF = 0, we need to
estimate EeλF under the assumption of an LSI with constant C; a natural thing to do is to
apply the LSI to the function f with

f 2 := eλF .

For notational convenience, let H(λ) := EeλF . Then

Ent(f 2) = E
[
λFeλF

]
−H(λ) logH(λ),
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whereas

|∇f(x)| ≤ e
λF (x)

2

(
λ

2

)
|∇F (x)|,

because the exponential function is smooth and F is 1-Lipschitz, and so

E|∇f |2 ≤ λ2

4
E
[
|∇F |2eλF

]
≤ λ2

4
E
[
eλF
]

=
λ2

4
H(λ)

(since |∇F | ≤ 1). Applying the LSI with constant C to this f thus yields

E
[
λFeλF

]
−H(λ) logH(λ) = λH ′(λ)−H(λ) logH(λ) ≤ Cλ2

2
H(λ),

or rearranging,
H ′(λ)

λH(λ)
− logH(λ)

λ2
≤ C

2
.

Indeed, if we define K(λ) := logH(λ)
λ

, then the right-hand side is just K ′(λ), and so we
have the simple differential inequality

K ′(λ) ≤ C

2
.

Now, H(0) = 1, so

lim
λ→0

K(λ) = lim
λ→0

H ′(λ)

H(λ)
= lim

λ→0

E
[
FeλF

]
E [eλF ]

= EF = 0,

and thus

K(λ) =

∫ λ

0

K ′(s)ds ≤
∫ λ

0

C

2
ds =

Cλ

2
.

In other words,
H(λ) = E

[
eλF
]
≤ e

Cλ2

2 .

It follows from (3.2) that for F : X → R which is 1-Lipschitz and bounded,

P [F ≥ EF + r] ≤ e−λr+
Cλ2

2 .

Now choose λ = r
C

and the statement of the result follows under the assumption that F is
bounded.

In the general case, let ε > 0 and define the truncation Fε by

Fε(x) :=


−1
ε
, F (x) ≤ −1

ε
;

F (x), −1
ε
≤ F (x) ≤ 1

ε
;

1
ε
, F (x) ≥ 1

ε
.
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Then Fε is 1-Lipschitz and bounded so that by the argument above,

E
[
eλFε

]
≤ eλEFε+

Cλ2

2 .

The truncation Fε approaches F pointwise as ε→ 0, so by Fatou’s lemma,

E
[
eλF
]
≤ elim infε→0 λEFεe

Cλ2

2 .

It remains to show that EFε
ε→0−−→ EF ; we can then complete the proof in the unbounded

case exactly as before.
Now, we’ve already proved the concentration inequality

P [|Fε − EFε| > t] ≤ 2e−
t2

2C (3.3)

and Fε converges pointwise (hence also in probability) to F , which has some finite value at
each point in X , so there is a constant K such that

P [|F | ≤ K] ≥ 3

4
,

and the convergence of Fε in probability to F means that there is some K ′ such that for
ε < εo,

P [|Fε − F | > K ′] <
1

4
.

It follows that for ε < εo,
E|Fε| < K +K ′.

It also follows from (3.3) and Fubini’s theorem that

E |Fε − EFε|2 =

∫ ∞
0

tP [|Fε − EFε| > t] dt ≤
∫ ∞

0

2te−
t2

2C dt = 2C,

so that in fact EF 2
ε ≤ 2C +K +K ′. Using Fatou’s lemma again gives that

EF 2 ≤ lim inf
ε→0

EF 2
ε ≤ 2C +K +K ′.

We can then use convergence in probability again

|EF − EFε| =≤ δ + E|Fε − F |1|Fε−F |>δ ≤ δ +
√

E|Fε − F |2P [|Fε − F | > δ]
ε→0−−→ 0.

One of the reasons that the approach to concentration via log-Sobolev inequalities is
so nice is that log-Sobolev inequalities tensorize; that is, if one has the same LSI on each
of some finite collection of spaces, one can get the same LSI again on the product space,
independent of the number of factors. Specifically, we have the following.
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Theorem 3.6 (see [?]). Suppose that each of the metric probability spaces (Xi, di, µi)
(1 ≤ i ≤ n) satisifes a log-Sobolev inequality: for each i there is a Ci > 0 such that for
every locally Lipschitz function f : Xi → R,

Entµi(f
2) ≤ 2Ci

∫
|∇Xif |2dµi.

Let X = X1 × · · · ×Xn, and equip X with the L2-sum metric

d
(
(x1, . . . , xn), (y1, . . . , yn)

)
:=

√√√√ n∑
i=1

d2
i (xi, yi)

and the product probability measure µ := µ1 ⊗ · · · ⊗ µn. Then (X, d, µ) satisfies a log-
Sobolev inequality with constant C := max1≤i≤nCi.

Note that with respect to the L2-sum metric, if f : X → R, then

|∇f |2 =
n∑
i=1

|∇Xif |2,

where

|∇Xif(x1, . . . , xn)| = lim sup
yi→xi

|f(x1, . . . , xi−1, yi, xi+1, . . . , xn)− f(x1, . . . , xn)|
di(yi, xi)

.

A crucial point to notice above is that the constant C doesn’t get worse with the number
of factors; that is, the lemma gives dimension-free tensorization.

The theorem follows immediately from the following property of entropy.

Proposition 3.7. Let X = X1 × · · · ×Xn and µ = µ1 ⊗ · · · ⊗ µn as above, and suppose
that f : X → [0,∞). For {x1, . . . , xn} \ {xi} fixed, write

fi(xi) = f(x1, . . . , xn),

thought of as a function of xi. Then

Entµ(f) ≤
n∑
i=1

∫
Entµi(fi)dµ.

Proof. The proof is a good chance to see a dual formulation of the definition of entropy.
Given a probability space (Ω,F,P), we defined entropy for a function f : Ω→ R by

EntP(f) :=

∫
f log(f)dP−

(∫
fdP

)
log

(∫
fdP

)
.
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It turns out to be equivalent to define

EntP(f) := sup

{∫
fgdP

∣∣∣∣ ∫ egdP ≤ 1

}
,

which can be seen as follows.
First, for simplicity we may assume that

∫
fdP = 1, since both expressions we’ve given

for the entropy are homogeneous of degree 1. Then our earlier expression becomes

EntP(f) =

∫
f log(f)dP.

Now, if g := log(f), then
∫
eg =

∫
f = 1, and so we have that∫

f log(f)dP =

∫
fgdP ≤ sup

{∫
fgdP

∣∣∣∣ ∫ egdP ≤ 1

}
.

On the other hand, Young’s inequality says that for u ≥ 0 and v ∈ R,

uv ≤ u log(u)− u+ ev;

applying this to u = f and v = g and integrating shows that

sup

{∫
fgdP

∣∣∣∣ ∫ egdP ≤ 1

}
≤
∫
f log(f)dP.

With this alternative definition of entropy, given g such that
∫
egdµ ≤ 1, for each i

define

gi(x1, . . . , xn) := log

(∫
eg(y1,...,yi−1,xi,...,xn)dµ1(y1) · · · dµi−1(yi−1)∫
eg(y1,...,yi,xi+1,...,xn)dµ1(y1) · · · dµi(yi)

)
,

(note that gi only actually depends on xi, . . . , xn). Then
n∑
i=1

gi(x1, . . . , xn) = log

(
eg(x1,...,xn)∫

eg(y1,...,yn)dµ1(y1) · · · dµn(yn)

)
≥ g(x1, . . . , xn),

and by construction,∫
e(gi)idµi =

∫ (∫
eg(y1,...,yi−1,xi,...,xn)dµ1(y1) · · · dµi−1(yi−1)∫
eg(y1,...,yi,xi+1,...,xn)dµ1(y1) · · · dµi(yi)

)
dµi(xi) = 1.

Applying these two estimates together with Fubini’s theorem yields∫
fgdµ ≤

n∑
i=1

∫
fgidµ =

n∑
i=1

∫ (∫
fi(g

i)idµi

)
dµ ≤

n∑
i=1

∫
Entµi(fi)dµ.
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The optimal (i.e., with smallest constants) log-Sobolev inequalities on most of the com-
pact classical matrix groups were proved using the Bakry-Émery curvature criterion. To
state it, we need to delve a little bit into the world of Riemannian geometry and define some
quantities on Riemannian manifolds, most notably, the Ricci curvature.

Recall that a Riemannian manifold (M, g) is a smooth manifold (every point has an
open neighborhood which is diffeomorphic to an open subset of Euclidean space) together
with a Riemannian metric g. The metric g is a family of inner products: at each point
p ∈ M , gp : TpM × TpM → R defines an inner product on the tangent space TpM to M
at p. Our manifolds are all embedded in Euclidean space already, and the metrics are just
those inherited from the ambient Euclidean space (this came up briefly in our discussion of
the Riemannian construction of Haar measure in Lecture 1).

A vector field X on M is a smooth (infinitely differentiable) map X : M → TM such
that for each p ∈ M , X(p) ∈ TpM . To have a smooth Riemannian manifold, we require
the metric g to be smooth, in the sense that for any two smooth vector fields X and Y on
M , the map

p 7−→ gp(X(p), Y (p))

is a smooth real-valued function on M .
In Riemannian geometry, we think of vector fields as differential operators (think of

them as directional derivatives): given a smooth function f : M → R and a vector field X
on M , we define the function X(f) by the requirement that for any curve γ : [0, T ] → M
with γ(0) = p and γ′(0) = X(p) (here, γ′(0) denotes the tangent vector to the curve γ at
γ(0) = p),

X(f)(p) =
d

dt
f(γ(t))

∣∣∣∣
t=0

.

Given two vector fields X and Y on M , there is a unique vector field [X, Y ], called the
Lie Bracket of X and Y , such that

[X, Y ](f) = X(Y (f))− Y (X(f)).

It is sometimes convenient to work in coordinates. A local frame {Li} is a collection
of vector fields defined on an open set U ⊆ M such that at each point p ∈ U , the vectors
{Li(p)} ⊆ TpM form a basis of TpM . The vector fields {Li} are called a local orthonor-
mal frame if at each point in U , the {Li} are orthonormal with repect to g. Some manifolds
only have local frames, not global ones; that is, you can’t define a smooth family of vector
fields over the whole manifold which forms a basis of the tangent space at each point. This
is true, for example of S2 ⊆ R3.

We need a few more notions in order to get to curvature. Firstly, a connection ∇ on
M is a way of differentiating one vector field in the direction of another: a connection ∇
is a bilinear form on vector fields that assigns to vector fields X and Y a new vector field
∇XY , such that for any smooth function f : M → R,

∇fXY = f∇XY and ∇X(fY ) = f∇X(Y ) +X(f)Y.
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A connection is called torsion-free if∇XY−∇YX = [X, Y ]. There is a special connection
on a Riemannian manifold, called the Levi-Civita connection, which is the unique torsion-
free connection with the property that

X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ).

This property may look not obviously interesting, but geometrically, it is a compatibility
condition of the connection ∇ with g. There is a notion of transporting a vector field in
a “parallel way” along a curve, which is defined by the connection. The condition above
means (this is not obvious) that the inner product defined by g of two vector fields at a point
is unchanged if you parallel-transport the vector fields (using ∇ to define “parallel”) along
any curve.

Finally, we can define the Riemannian curvature tensor R(X, Y ): to each pair of
vector fields X and Y on M , we associate an operator R(X, Y ) on vector fields defined by

R(X, Y )(Z) := ∇X(∇YZ)−∇Y (∇XZ)−∇[X,Y ]Z.

The Ricci curvature tensor is the function Ric(X, Y ) on M which, at each point p ∈ M ,
is the trace of the linear map on TpM defined by Z 7→ R(Z, Y )(X). In orthonormal local
coordinates {Li},

Ric(X, Y ) =
∑
i

g(R(X,Li)Li, Y ).

(Note that seeing that this coordinate expression is right involves using some of the sym-
metries of R.) The Bakry-Émery criterion can be made more general, but for our purposes
it suffices to formulate it as follows.

Theorem 3.8 (Bakry–Émery). Let (M, g) be a compact, connected, m-dimensional Rie-
mannian manifold with normalized volume measure µ. Suppose that there is a constant
c > 0 such that for each p ∈M and each v ∈ TpM ,

Ricp(v, v) ≥ 1

c
gp(v, v).

Then µ satisfies a log-Sobolev inequality with constant c.

3.3 Concentration for the compact classical groups
Theorem 3.9. The matrix groups and cosets SO (n), SO− (n), SU (n), U (n), and Sp (2n)
with Haar probability measure and the Hilbert–Schmidt metric, satisfy logarithmic Sobolev
inequalities with constants
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G CG

SO (n), SO− (n) 4
n−2

SU (n) 2
n

U (n) 6
n

Sp (2n) 1
2n+1

We saw in Lecture 1 (Lemma 1.4) that the the geodesic distance on U (n) is bounded
above by π/2 times the Hilbert–Schmidt distance. Thus Theorem 3.9 implies, for example
that U (n) equipped with the geodesic distance also satisfies a log-Sobolev inequality, with
constant 3π2/2n.

Exercise 3.10. Prove that Theorem 3.9 does indeed imply a LSI for the geodesic distance
with constant 3π2/n.

The proof of Theorem 3.9 for each G except U (n) follows immediately from the
Bakry–Émery Theorem, by the following curvature computations.

Proposition 3.11. If Gn is one of SO (n), SO− (n) SU (n), or Sp (2n), then for each
U ∈ Gn and each X ∈ TUGn,

RicU(X,X) = cGngU(X,X),

where gU is the Hilbert-Schmidt metric and cGn is given by

G cG

SO (n), SO− (n) n−2
4

SU (n) n
2

Sp (2n) 2n+ 1

This gives us the concentration phenomenon we’re after on all of the Gn except O (n)
and U (n). Now, on O (n) we can’t actually expect more and indeed more is not true,
because O (n) is disconnected. We have the best we can hope for already, namely concen-
tration on each of the pieces. In the case of U (n), though, we in fact do have the same
kind of concentration that we have on SU (n). There is no non-zero lower bound on the
Ricci curvature on U (n), but the log-Sobolev inequality there follows from the one on
SU (n). The crucial observation is the following coupling of the Haar measures on SU (n)
and U (n).

Lemma 3.12. Let θ be uniformly distributed in
[
0, 2π

n

]
and let V ∈ SU (n) be uniformly

distributed, with θ and V independent. Then eiθV is uniformly distributed in U (n).
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Proof. Let X be uniformly distributed in [0, 1), K uniformly distributed in {0, . . . , n− 1},
and V uniformly distributed in SU (n) with (X,K, V ) independent. Consider

U = e2πiX/ne2πiK/nV.

On one hand, it is easy to see that (X + K) is uniformly distributed in [0, n], so that
e2πi(X+K)/n is uniformly distributed on S1. Thus U d

= ωV for ω uniform in S1 and indepen-
dent of V . One can then show that the distribution of ωV is translation-invariant on U (n),
and thus yields Haar measure.

On the other hand, if In is the n × n identity matrix, then e2πiK/nIn ∈ SU (n). By the
translation invariance of Haar measure on SU (n) this implies that e2πiK/nV

d
= V , and so

e2πiX/nV
d
= U .

Exercise 3.13. Prove carefully that if ω is uniform in S1 and U is Haar-distributed in SU (n)
with ω, U independent, then ωU is Haar-distributed in U (n).

Using this coupling lets us prove the log-Sobolev inequality on U (n) via the tensoriza-
tion property of LSI.

Proof of Theorem 3.9. First, for the interval [0, 2π] equipped with its standard metric and
uniform measure, the optimal constant in (3.1) for functions f with f(0) = f(2π) is known
to be 1, see e.g. [?]. This fact completes the proof — with a better constant than stated above
— in the case n = 1; from now on, assume that n ≥ 2.

Suppose that f : [0, π]→ R is locally Lipschitz, and define a function f̃ : [0, 2π]→ R
by reflection:

f̃(x) :=

{
f(x), 0 ≤ x ≤ π;

f(2π − x), π ≤ x ≤ 2π.

Then f̃ is locally Lipschitz and f̃(2π) = f̃(0), so f̃ satisfies a LSI for uniform measure on
[0, 2π] with constant 1. If µ[a,b] denotes uniform (probability) measure on [a, b], then

Entµ[0,2π](f̃
2) = Entµ[0,π](f

2),

and
1

2π

∫ 2π

0

|∇f̃(x)|2dx =
1

π

∫ π

0

|∇f(x)|2dx,

so f itself satisfies a LSI for uniform measure on [0, π] with constant 1 as well. In fact, the
constant 1 here is optimal (see Exercise 3.14).

It then follows by a scaling argument that the optimal logarithmic Sobolev constant on[
0, π

√
2√
n

)
is 2/n (for g :

[
0, π

√
2√
n

)
→ R, apply the LSI to g

(√
2
n
x
)

and rearrange it to get

the LSI on
[
0, π

√
2√
n

)
.)
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By Theorem 3.9 SU (n) satisfies a log-Sobolev inequality with constant 2/n when
equipped with its geodesic distance, and hence also when equipped with the Hilbert–
Schmidt metric. By the tensorization property of log-Sobolev inequalities in Euclidean
spaces (Lemma 3.6), the product space

[
0, π

√
2√
n

)
×SU (n), equipped with the L2-sum met-

ric, satisfies a log-Sobolev inequality with constant 2/n as well.
Define the map F :

[
0, π

√
2√
n

)
× SU (n) → U (n) by F (t, V ) = e

√
2it/
√
nV . By Lemma

3.12, the push-forward via F of the product of uniform measure on
[
0, π

√
2√
n

)
with uniform

measure on SU (n) is uniform measure on U (n). Moreover, this map is
√

3-Lipschitz:∥∥∥e√2it1/
√
nV1 − e

√
2it2/

√
nV2

∥∥∥
HS
≤
∥∥∥e√2it1/

√
nV1 − e

√
2it1/

√
nV2

∥∥∥
HS

+
∥∥∥e√2it1/

√
nV2 − e

√
2it2/

√
nV2

∥∥∥
HS

= ‖V1 − V2‖HS +
∥∥∥e√2it1/

√
nIn − e

√
2it2/

√
nIn

∥∥∥
HS

≤ ‖V1 − V2‖HS +
√

2 |t1 − t2|

≤
√

3

√
‖V1 − V2‖2

HS + |t1 − t2|2.

Since the map F is
√

3-Lipschitz, its image U (n) with the (uniform) image measure
satisfies a logarithmic Sobolev inequality with constant (

√
3)2 2

n
= 6

n
.

Exercise 3.14. Prove that the optimal log-Sobolev constant for uniform measure on [0, π]
is 1. Here are two possible approaches:

1. Suppose uniform measure on [0, π] satisfied a LSI with constant C < 1. Let f :
[0, 2π] be locally Lipschitz with f(0) = f(2π). Decompose all of the integrals in the
expression for the entropy of f 2 w.r.t. uniform measure on [0, 2π] into the part on
[0, π] and the part on [π, 2π]. Use the concavity of the logarithm and your assumed
LSI to get an estimate for the entropy of f 2 on [0, 2π]. Now obtain a contraditction
by observing that whether or not the crucial inequality holds is invariant under the
transformation f(x) 7−→ f(2π − x), and so you may use whichever version of f is
more convenient.

2. Consider the function f(x) = 1 + ε cos(x) on [0, π]. Suppose you had an LSI on
[0, π] with constant C < 1. Apply it to this f and expand Entµ[0,π](f

2) in powers of
ε to get a contradiction.

From our log-Sobolev inequalities, we finally get the concentration we want on the
compact classical groups, as follows.

Corollary 3.15. Given n1, . . . , nk ∈ N, let X = Gn1×· · ·×Gnk , where for each of the ni,
Gni is one of SO (ni), SO− (ni), SU (ni), U (ni), or Sp (2ni). Let X be equipped with the
L2-sum of Hilbert–Schmidt metrics on the Gni . Suppose that F : X → R is L-Lipschitz,
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and that {Uj ∈ Gnj : 1 ≤ j ≤ k} are independent, Haar-distributed random matrices.
Then for each t > 0,

P
[
F (U1, . . . , Uk) ≥ EF (U1, . . . , Uk) + t

]
≤ e−(n−2)t2/12L2

,

where n = min{n1, . . . , nk}.

Proof. By Theorem 3.9 and Lemma 3.6, X satisfies a log-Sobolev inequality with constant
6/(n−2). The stated concentration inequality then follows from the Herbst argument.



Lecture 4

Applications of Concentration

4.1 The Johnson-Lindenstrauss Lemma
A huge area of application in computing is that of dimension-reduction. In this day and
age, we are often in the situation of having (sometimes large, sometimes not so large) data
sets that live in very high-dimension. For example, a digital image can be encoded as a ma-
trix, with each entry corresponding to one pixel, and the entry specifying the color of that
pixel. So if you had a small black and white image whose resolution was, say 100 × 150
pixels, you would encode it as a vector in {0, 1}15,000. An issue that causes problems is that
many algorithms for analyzing such high-dimensional data have their run-time increase
very quickly as the dimension of the data increases, to the point that analyzing the data in
the most obvious way becomes computationally infeasible. The idea of dimension reduc-
tion is that in many situations, the desired algorithm can be at least approximately carried
out in a much lower-dimensional setting than the one the data come to you in, and that can
make computationally infeasible problems feasible.

A motivating problem
Suppose you have a data set consisting of black and white images of hand-written examples
of the numbers 1 and 2. So you have a reference collection X of n points in Rd, where d
is the number of pixels in each image. You want to design a computer program so that one
can input an image of a hand-written number, and the computer can tell whether it’s a 1
or a 2. So the computer will have a query point q ∈ Rd, and the natural thing to do is to
program it to find the closest point in the reference set X to q; the computer then reports
that the input image was of the same number as that closest point in X.

36
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P. Indyk

The naı̈ve approach would be for the computer to calculate the distance from q to each
of the points of X in turn, keeping track of which point in X has so far been the closest.
Such an algorithm runs in O(nd) steps. Remember that d can be extremely large if our
images are fairly high resolution, so nd steps might be computationally infeasible. Many
mathematicians’ first remark at this point is that the problem only has to be solved within
the span of the points of X and q, so that one can a priori replace d by n. Actually doing
this, though, means you have to find an orthonormal basis for the subspace you plan to
work in, so in general you can’t save time this way.

The idea of dimension reduction is to find a way to carry out the nearest point algorithm
within some much lower-dimensional space, in such a way that you are guarranteed (or to
be more realistic, very likely) to still find the closest point, and without having to do much
work to figure out which lower-dimensional space to work in. This sounds impossible,
but the geometry of high-dimensional spaces often turns out to be surprising. An impor-
tant result about high-dimensional geometry that has inspired many randomized algorithms
incorporating dimension-reduction is the following.

Lemma 4.1 (The Johnson–Lindenstrauss Lemma). There are absolute constants c, C such
that the following holds.

Let {xj}nj=1 ⊆ Rd, and let P be a random k× d matrix, consisting of the first k rows of
a Haar-distributed random matrix in O (d). Fix ε > 0 and let k = a log(n)

ε2
. With probability

1− Cn2−ac

(1− ε)‖xi − xj‖2 ≤
(
d

k

)
‖Pxi − Pxj‖2 ≤ (1 + ε)‖xi − xj‖2 (4.1)

for all i, j ∈ {1, . . . , n}.

What the lemma says is that one can take a set of n points in Rd and project them onto
a random subspace of dimension on the order of log(n) so that, after appropriate rescaling,
the pairwise distances between the points hardly changes. The practical conclusion of this
is that if your problem is about the metric structure of the data (finding the closest point as
above, finding the most separated pair of points, finding the minimum length spanning tree
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of a graph,etc.), there is no need to work in the high-dimensional space that the data natu-
rally live in, and that moreover there is no need to work hard to pick a lower-dimensional
subspace onto which to project: a random one should do.

Exercise 4.2. Verify that for x ∈ Rd and P as above, d
k
E‖Px‖2 = ‖x‖2.

Getting an almost-solution, with high probability
The discussion above suggests that we try to solve the problem of finding the closest point
to q in X by choosing a random k × d matrix P to be the first k rows of a Haar-distributed
U ∈ O (d), then finding the closest point in {Px :∈ X} to Pq. There are two obvious
issues here. One is that we might have the bad luck to choose a bad matrix P that doesn’t
satisfy (4.1). But that is very unlikely, and so we typically just accept the risk and figure it
won’t actually happen.

There is a second issue, though, which is that it’s possible that we choose P that does
satisfy (4.1), but that the closest point in {Px :∈ X} to Pq is Py, whereas the closest point
in X to q is z, with y 6= z. In that case, although our approach will yield the wrong value
for the closest point (y instead of z), we have by choice of y and (4.1) that

‖q − y‖ ≤

√
d

k(1− ε)
‖Pq − Py‖ ≤

√
d

k(1− ε)
‖Pq − Pz‖ ≤

√
1 + ε

1− ε
‖q − z‖.

So even though z is the true closest point to q, y is almost as close. In our example of
recognizing whether a hand-written number is a 1 or a 2, it seems likely that even if we
don’t find the exact closest point in the reference set, we’ll still manage to correctly identify
the number, which is all we actually care about.

For being willing to accept an answer which may be not quite right, and accept the
(tiny) risk that we’ll choose a bad matrix, we get a lot in return. The naı̈ve algorithm we
mentioned at the beginning now runs in O(n log(n)) steps.

Proof of Johnson-Lindenstrauss
Given {xi}ni=1 ⊆ Rd, ε > 0, and U a Haar-distributed random matrix in O (d), let P be the
k × d matrix consisting of the first k rows of U . We want to show that for each pair (i, j),

(1− ε)‖xi − xj‖2 ≤
(
d

k

)∥∥Pxi − Pxj∥∥2 ≤ (1 + ε)‖xi − xj‖2

with high probability, or equivalently,

√
1− ε ≤

√
d

k

∥∥Pxi,j∥∥ ≤ √1 + ε

for xi,j :=
xi−xj
‖xi−xj‖ .
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For notational convenience, fix i and j for the moment and let x = xi,j . For such an
x ∈ Sd−1 fixed, consider the function Fx : O (d)→ R defined by

Fx(U) =

√
d

k

∥∥∥Px∥∥∥.
Let U,U ′ ∈ O (d), and let P, P ′ denote the matrices of the first k rows of U and U ′.

Then ∣∣∣Fx(U)− Fx(U ′)
∣∣∣ =

√
d

k

∣∣∣‖Px‖ − ‖P ′x‖∣∣∣ ≤√d

k

∥∥(P − P ′)x
∥∥.

Exercise 4.3. Prove that
∥∥(P − P ′)x

∥∥ ≤ dH,S(U,U ′).
Hint: First show

∥∥(P − P ′)x
∥∥ ≤ ∥∥(U − U ′)x

∥∥.

That is, the function Fx is
√

d
k
-Lipschitz on O (d) with respect to dHS(·, ·) In particular,

Fx is also
√

d
k
-Lipschitz when restricted to either SO (d) or SO− (d).

The idea is to apply concentration of measure to the function Fx. We want a concentra-
tion inequality on the full orthogonal group, which we will get from similar inequalities on
the two components.

Haar measure on O (d) can be described in terms of Haar measure on SO (d) and
SO− (d) as follows. Let U1 be Haar-distributed in SO (d) and let U2 be the matrix obtained
from U by swapping the last two rows. Then we saw in Lecture 1 that U2 is Haar-distributed
in SO− (d), and so if U is equal to U1 with probability 1

2
and equal to U2 with probability

1
2
, then U is Haar distributed on O (d). Note that as long as k ≤ d− 2, the matrix P1 of the

first k rows of U1 is the same as the matrix P2 of the first k rows of U2. It follows that

EFx(U) = EFx(U1) = EFx(U2).

Because Fx is
√

d
k
-Lipschitz when restricted to either SO (d) or SO− (d), concentration of

measure implies that, for j = 1, 2,

P [|Fx(Uj)− EFx(Uj)| ≥ ε] ≤ Ce−ckε
2

.

It then follows by conditioning on whether U = U1 or U = U2 that

P [|Fx(U)− EFx(U)| ≥ ε] ≤ Ce−ckε
2

. (4.2)

To complete the proof, we need to show that EFx(U) ≈ 1.

By the invariance of Haar measure under translation,

Px
d
= Pe1 = (U11, . . . , Uk1),
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where e1 is the first standard basis vector in Rd. It follows that

Fx(U)
d
=

√(
d

k

)
(U2

11 + · · ·+ U2
k1).

We saw in the first lecture that EU2
i1 = 1

d
for each i, so E

[
Fx(U)

]2
= 1; written slightly

differently,

1 = Var(Fx(U)) +
(
EFx(U)

)2
.

By Fubini’s theorem and the concentration inequality (4.2),

Var(Fx(U)) =

∫ ∞
0

P
[
|Fx(U)− EFx(U)|2 ≥ t

]
dt ≤

∫ ∞
0

Ce−cktdt =
C

ck
,

so that √
1− C

ck
≤ EFx(U) ≤ 1.

Recall that k = a log(n)
ε2

. As long as ε < ca log(n)
C+ca log(n)

, this means that 1 − ε
2
≤ EFx(U) ≤ 1,

and so
P
[∣∣Fx(U)− 1

∣∣ > ε
]
≤ Ce−

ckε2

4 ; (4.3)

that is, with probability at least 1− Ce− ckε
2

4 ,

1− ε ≤
√
d

k
‖Px‖ ≤ 1 + ε.

Returning to the original formulation, for each pair (i, j), there is a set of probability at
least 1− Ce−ckε2 such that

(1− ε)2‖xi − xj‖2 ≤
(
d

k

)∥∥Uxi − Uxj∥∥2 ≤ (1 + ε)2‖xi − xj‖2.

There are fewer than n2 pairs (i, j), so a simple union bound gives that the above
statement holds for all pairs (i, j) with probability at least 1− C

nac−2 .

Exercise 4.4. In the course of the proof, we assumed that k ≤ d − 2 for convenience.
While we certainly expect this to be true in applications, show that this wasn’t necessary
by checking the cases k = d− 1 and k = d.
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4.2 Uniform approximation of the empirical spectral mea-
sure of powers of random unitary matrices

In this section we give the proof of Theorem 2.15 on the rate of convergence of the em-
pirical spectral measure of a Haar random matrix to the uniform distribution. The result
quoted there is a corollary of the following.

Theorem 4.5. Let µn,m be the spectral measure of Um, where 1 ≤ m ≤ n and U ∈ U (n)
is distributed according to Haar measure, and let ν denote the uniform measure on S1.
Then for each p ≥ 1,

EWp(µn,m, ν) ≤ Cp

√
m
[
log
(
n
m

)
+ 1
]

n
,

where C > 0 is an absolute constant.
Moreover, for each t > 0,

P

Wp(µn,m, ν) ≥ C

√
m
[
log
(
n
m

)
+ 1
]

n
+ t

 ≤ exp

[
−n

2t2

24m

]

for 1 ≤ p ≤ 2 and

P

Wp(µn,m, ν) ≥ Cp

√
m
[
log
(
n
m

)
+ 1
]

n
+ t

 ≤ exp

[
−n

1+2/pt2

24m

]

for p > 2, where C > 0 is an absolute constant.

This kind of change in behavior at p = 2 is typical for the Wasserstein distances.
By a simple application of the Borel-Cantelli lemma, one gets an almost sure rate of

convergence, as follows.

Corollary 4.6. Suppose that for each n, Un ∈ U (n) is Haar-distributed and 1 ≤ mn ≤ n.
Let ν denote the uniform measure on S1. There is an absolute constant C such that given
p ≥ 1, with probability 1, for all sufficiently large n,

Wp(µn,mn , ν) ≤ C

√
mn log(n)

n

if 1 ≤ p ≤ 2 and

Wp(µn,mn , ν) ≤ Cp

√
mn log(n)

n
1
2

+ 1
p

if p > 2.



LECTURE 4. APPLICATIONS OF CONCENTRATION 42

Exercise 4.7. Prove Corollary 4.6

The first step in proving Theorem 4.5 is to prove a concentration result for the num-
ber N(m)

θ of eigenangles of Um in [0, θ). We get such a result as a concenquence of the
following remarkable property of determinantal point processes.

Proposition 4.8. Let K : Λ × Λ → C be a kernel on a locally compact Polish space Λ
such that the corresponding integral operator K : L2(µ)→ L2(µ) defined by

K(f)(x) =

∫
K(x, y)f(y) dµ(y)

is self-adjoint, nonnegative, and locally trace-class with eigenvalues in [0, 1]. For D ⊆ Λ
measurable, letKD(x, y) = 1D(x)K(x, y)1D(y) be the restriction ofK toD. Suppose that
D is such that KD is trace-class; denote by {λk}k∈A the eigenvalues of the corresponding
operator KD on L2(D) (A may be finite or countable) and denote by ND the number of
particles of the determinantal point process with kernel K which lie in D. Then

ND
d
=
∑
k∈A

ξk,

where “ d
=” denotes equality in distribution and the ξk are independent Bernoulli random

variables with P[ξk = 1] = λk and P[ξk = 0] = 1− λk.

This result is quite valuable for us, because it tells us (once we’ve checked the condi-
tions; see Exercise 4.9) that N(1)

θ is distributed exactly as a sum of n independent Bernoulli
random variables. Moreover, thanks to Rains’ Theorem (Theorem 2.16), N(m)

θ is equal
in distribution to the total number of eigenvalue angles in [0, θ) of each of U0 . . . , Um−1,
where U0, . . . , Um−1 are independent and Uj is Haar-distributed in U

(⌈
n−j
m

⌉)
; that is,

N
(m)
θ

d
=

m−1∑
j=0

Nj,θ,

where the Nj,θ are the independent counting functions corresponding to U0, . . . , Um−1. It
is therefore also true that N(m)

θ is distributed exactly as a sum of n independent Bernoulli
random variables.

Exercise 4.9. Show that the operator K : L2([0, 2π))→ L2([0, 2π)) defined by

K(f)(x) =
1

2π

∫ 2π

0

KN(x− y)f(y)dy,

for KN(z) =
∑N−1

j=0 eijz is self-adjoint, nonnegative, and trace-class.
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Classical probability has quite a few things to say about sums of independent Bernoulli
random variables; in particular, an application of Bernstein’s inequality (Theorem 3.1) will
give us the concentration we need for the eigenvalue counting function. Specifically, for
each t > 0 we have

P
[∣∣∣N(m)

θ − EN(m)
θ

∣∣∣ > t
]
≤ 2 exp

(
−min

{
t2

4σ2
,
t

2

})
, (4.4)

where σ2 = VarN
(m)
θ .

Of course, in order to apply (4.4), it is necessary to estimate EN(m)
θ and σ2. Rains’

Theorem again means we only need to do any real work in the case m = 1. To do the
computations, we use the kernel of the eigenvalue process given in Theorem 2.18 together
with the formulae from Lemma 2.19.

Proposition 4.10. Let U be uniform in U (N). Then for all θ ∈ [0, 2π),

EN(1)
θ =

nθ

2π
,

and
VarN

(1)
θ ≤ log n+ 1.

Proof. Computing EN(1)
θ is trivial, either by symmetry or by Lemma 2.19.

To compute VarN
(1)
θ , note first that if θ ∈ (π, 2π), then Nθ

d
= N − N2π−θ, and so it

suffices to assume that θ ≤ π. By Proposition 2.18 and Lemma 2.19,

VarNθ =
1

4π2

∫ θ

0

∫ 2π

θ

Sn(x− y)2 dx dy =
1

4π2

∫ θ

0

∫ 2π−y

θ−y

sin2
(
nz
2

)
sin2

(
z
2

) dz dy

=
1

4π2

[∫ θ

0

z sin2
(
nz
2

)
sin2

(
z
2

) dz +

∫ 2π−θ

θ

θ sin2
(
nz
2

)
sin2

(
z
2

) dz +

∫ 2π

2π−θ

(2π − z) sin2
(
nz
2

)
sin2

(
z
2

) dz

]

=
1

2π2

[∫ θ

0

z sin2
(
nz
2

)
sin2

(
z
2

) dz +

∫ π

θ

θ sin2
(
nz
2

)
sin2

(
z
2

) dz

]
.

For the first integral, since sin
(
z
2

)
≥ z

π
for all z ∈ [0, θ], if θ > 1

n
, then∫ θ

0

z sin2
(
nz
2

)
sin2

(
z
2

) dz ≤
∫ 1

n

0

(πn)2z

4
dz +

∫ θ

1
n

π2

z
dz = π2

(
1

8
+ log(n) + log(θ)

)
.

If θ ≤ 1
n

, there is no need to break up the integral and one simply has the bound (πnθ)2

8
≤ π2

8
.

Similarly, if θ < 1
n

, then∫ π

θ

θ sin2
(
nz
2

)
sin2

(
z
2

) dz ≤
∫ 1

n

θ

θ(πn)2

4
dz +

∫ π

1
n

π2θ

z2
dz

=
π2θn

4
(1− nθ) + π2nθ − πθ ≤ 5π2

4
;
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if θ ≥ 1
n

, there is no need to break up the integral and one simply has a bound of π2.
All together,

VarNθ ≤ log(n) +
11

16
.

Corollary 4.11. Let U be uniform in U (n) and 1 ≤ m ≤ n. For θ ∈ [0, 2π), let N(m)
θ be

the number of eigenvalue angles of Um in [0, θ). Then

EN(m)
θ =

nθ

2π
and VarN

(m)
θ ≤ m

(
log
( n
m

)
+ 1
)
.

Proof. This follows immediately from Theorem 2.16; note that the n/m in the variance
bound, as opposed to the more obvious dn/me, follows from the concavity of the logarithm.

Putting these estimates together with Equation (4.4) gives that for all t > 0,

P
[∣∣∣∣N(m)

θ − nθ

2π

∣∣∣∣ > t

]
≤ 2 exp

(
−min

{
t2

4m
(
log
(
n
m

)
+ 1
) , t

2

})
. (4.5)

It’s fairly straighforward to use this inequality to obtain concentration for the individual
eigenangles around their predicted values, as follows.

Lemma 4.12. Let 1 ≤ m ≤ n and let U ∈ U (n) be uniformly distributed. Denote by eiθj ,
1 ≤ j ≤ n, the eigenvalues of Um, ordered so that 0 ≤ θ1 ≤ · · · ≤ θn < 2π. Then for each
j and u > 0,

P
[∣∣∣∣θj − 2πj

n

∣∣∣∣ > 4π

n
u

]
≤ 4 exp

[
−min

{
u2

m
(
log
(
n
m

)
+ 1
) , u}] . (4.6)

Proof. For each 1 ≤ j ≤ n and u > 0, if j + 2u < n then

P
[
θj >

2πj

n
+

4π

n
u

]
= P

[
N

(m)
2π(j+2u)

n

< j

]
= P

[
j + 2u−N

(m)
2π(j+2u)

n

> 2u

]
≤ P

[∣∣∣∣N(m)
2π(j+2u)

n

− EN(m)
2π(j+2u)

n

∣∣∣∣ > 2u

]
.

If j + 2u ≥ n then

P
[
θj >

2πj

n
+

4π

n
u

]
= P [θj > 2π] = 0,

and the above inequality holds trivially. The probability that θj < 2πj
n
− 4π

n
u is bounded in

the same way. Inequality (4.6) now follows from (4.5).
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We are now in a position to bound the expected distance between the empirical spectral
measure of Um and uniform measure. Let θj be as in Lemma 4.12. Then by Fubini’s
theorem,

E
∣∣∣∣θj − 2πj

n

∣∣∣∣p =

∫ ∞
0

ptp−1P
[∣∣∣∣θj − 2πj

n

∣∣∣∣ > t

]
dt

=
(4π)pp

np

∫ ∞
0

up−1P
[∣∣∣∣θj − 2πj

n

∣∣∣∣ > 4π

n
u

]
du

≤ 4(4π)pp

np

[∫ ∞
0

up−1e−u
2/m[log(n/m)+1] du+

∫ ∞
0

up−1e−u du

]
=

4(4π)p

np

[(
m
[
log
( n
m

)
+ 1
])p/2

Γ
(p

2
+ 1
)

+ Γ(p+ 1)

]
≤ 8Γ(p+ 1)

(
4π

n

√
m
[
log
( n
m

)
+ 1
])p

.

Observe that in particular,

Var θj ≤ C
m
[
log
(
n
m

)
+ 1
]

n2
.

Let νn be the measure which puts mass 1
n

at each of the points e2πij/n, 1 ≤ j ≤ n. Then

EWp(µn,m, νn)p ≤ E

[
1

n

n∑
j=1

∣∣eiθj − e2πij/n
∣∣p] ≤ E

[
1

n

n∑
j=1

∣∣∣∣θj − 2πj

n

∣∣∣∣p
]

≤ 8Γ(p+ 1)

(
4π

n

√
m
[
log
( n
m

)
+ 1
])p

.

It is easy to check that Wp(νn, ν) ≤ π
n

, and thus

EWp(µn,m, ν) ≤ EWp(µn,m, νn) +
π

n
≤ (EWp(µn,m, νn)p)

1
p +

π

n
. (4.7)

Applying Stirling’s formula to bound Γ(p+ 1)
1
p completes the proof.

To prove the rest of the main theorem, namely the concentration of Wp(µn,m, ν) at its
mean, the idea is essentially to show that Wp(µn,m, ν) is a Lipschitz function of U and
apply concentration of measure.

The following lemma gives the necessary Lipschitz estimates for the functions to which
the concentration property will be applied.

Lemma 4.13. Let p ≥ 1. The map A 7→ µA taking an n× n normal matrix to its spectral
measure is Lipschitz with constant n−1/max{p,2} with respect to Wp. Thus if ρ is any fixed
probability measure on C, the mapA 7→ Wp(µA, ρ) is Lipschitz with constant n−1/max{p,2}.
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Proof. If A and B are n × n normal matrices, then the Hoffman–Wielandt inequality [?,
Theorem VI.4.1] states that

min
σ∈Σn

n∑
j=1

∣∣λj(A)− λσ(j)(B)
∣∣2 ≤ ‖A−B‖2

HS , (4.8)

where λ1(A), . . . , λn(A) and λ1(B), . . . , λn(B) are the eigenvalues (with multiplicity, in
any order) of A and B respectively, and Σn is the group of permutations on n letters.
Defining couplings of µA and µB given by

πσ =
1

n

n∑
j=1

δ(λj(A),λσ(j)(B))

for σ ∈ Σn, it follows from (4.8) that

Wp(µA, µB) ≤ min
σ∈Σn

(
1

n

n∑
j=1

∣∣λj(A)− λσ(j)(B)
∣∣p)1/p

≤ n−1/max{p,2} min
σ∈Σn

(
n∑
j=1

∣∣λj(A)− λσ(j)(B)
∣∣2)1/2

≤ n−1/max{p,2} ‖A−B‖HS .

Now, by Rains’ Theorem, µn,m is equal in distribution to the spectral measure of a
block-diagonal n × n random matrix U1 ⊕ · · · ⊕ Um, where the Uj are independent and
uniform in U

(⌊
n
m

⌋)
and U

(⌈
n
m

⌉)
. Identify µn,m with this measure and define the function

F (U1, . . . , Um) = Wp(µU1⊕···⊕Um , ν); the preceding discussion means that if U1, . . . , Um

are independent and uniform in U
(⌊

n
m

⌋)
and U

(⌈
n
m

⌉)
as necessary, then F (U1, . . . , Um)

d
=

Wp(µn,m, ν).
Applying the concentration inequality in Corollary 3.15 to the function F gives that

P
[
F (U1, . . . , Um) ≥ EF (U1, . . . , Um) + t

]
≤ e−nt

2/24mL2

,

where L is the Lipschitz constant of F , and we have used the trivial estimate
⌊
n
m

⌋
≥ n

2m
.

Inserting the estimate of EF (U1, . . . , Um) from Equation (4.7) and the Lipschitz estimates
of Lemma 4.13 completes the proof.
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