1. Consider the system \(\frac{dY}{dt} = AY \), where \(A = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \).

(a) Find the eigenvalues of \(A \).

(b) Find the eigenvectors of \(A \).

(c) Find the general solution of the system.
(d) Find the solution of the system with the initial condition \(Y(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \).

(e) Sketch the phase portrait, including the solution curve with the initial condition \(Y(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \).
2. Consider the one-parameter family of linear systems given by

\[\frac{dY}{dt} = \begin{pmatrix} a & a + 1 \\ a - 1 & a \end{pmatrix} Y. \]

(a) Sketch the corresponding curve in the trace-determinant plane.

(b) Identify which types of behaviors the system exhibits for which values of \(a \).
3. Suppose a block with mass 1 is attached to the end of a spring with spring constant 5. The block is subject to a damping force proportional to its velocity, with a damping coefficient 4. Finally, an external time-dependent force of \(\cos 2t \) acts on the block.

(a) Write a differential equation which models the behavior of the block.

(b) Find the general solution of your differential equation.
(c) Describe the long-term behavior of the block.

(d) Suppose that at time 0 the block is at rest and the spring is stretched so that the block is a distance 1 from its equilibrium position. Determine the position of the block for all times t.