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Math 224 Quiz 2 — E. Meckes

1. Consider the model for the damped harmonic oscillator given by
y"(t) + 2y'(t) + 10y = 0.
(a) Show that y1(t) = e ‘sin(3t) and y»(t) = e *cos(3t) are both solutions to the
differential equation above.
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(b) Convert the second-order equation into a first-order system. What solutions to the
system correspond to the solutions you were given to the second-order equation?
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(c) Give the general solution (to either the system or the second-order equation).
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(d) Describe the typical long-term motion of the block in this model.
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2. Recall the basic SIR Model of an epidemic:

ds al dR
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dt g = = dt
where S is the portion of the population that is susceptible, I is the portion infected,
and R is the portion “recovered”; i.e., not infected or susceptible.
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Suppose now that the disease is evolving so that recovered people become susceptible
to new strains at a rate proportional to the size of the recovered population.

(a) Modify the basic model to reflect this.
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(b) Give a two-dimensional version of the new model, involving only S and /. (Recall
that S(t) + I(t) + R(t) =£ for all t.)
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Here is a picture of the phase plane of
(c) the two-dimensional model (for a particu-
lar choice of parameters). If the disease is
initially introduced into the population by 4 |
a small number of people, what happens in l“b
the long-term?
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3. Consider the linear system o BY = {_3 _2} Y.

(a) Find the eigenvalues of B.
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(b) Find the corresponding eigenvectors.
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(c¢) Give the general solution to the system.
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(e) What is the long-term behavior of your solution as t — co? What about t —+ —o0?
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(f) Sketch the phase plane for this system. Make sure to include any straight-line
solutions, indicate direction of solution curves in time, and include the solution
curve you found above to the initial value problem.
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