1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map given by reflection across the plane $x+y+z=0$. Find the matrix of T with respect to the basis $\mathcal{B}:=\left\{\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$.
2. Let $S: \mathcal{P}_{m}(\mathbb{R}) \rightarrow \mathcal{P}_{m-1}(\mathbb{R})$ be defined by $S f(x)=f^{\prime}(x)$. Choose bases of $\mathcal{P}_{m}(\mathbb{R})$ and $\mathcal{P}_{m-1}(\mathbb{R})$, prove that they are in fact bases, and then find the matrix of S with respect to your choice of bases.
3. Show that

$$
\left\langle p_{1}, p_{2}\right\rangle:=\int_{0}^{1} p_{1}(t) p_{2}(t) d t
$$

defines an inner product on $\mathcal{P}(\mathbb{R})$.

