1. Show that similar matrices have the same eigenvalues.
2. Let $A \in M_{n}(\mathbb{C})$ have singular values s_{1}, \ldots, s_{n}, and define $B \in M_{2 n}(\mathbb{C})$ by

$$
B=\left[\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right] .
$$

Show that the eigenvalues of B are $s_{1}, \ldots, s_{n},-s_{1}, \ldots,-s_{n}$. Hint: Use the singular value decomposition of A.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by reflecting across the line making angle θ with the x-axis. Find the matrix of T in a convenient basis, and then use it to find the matrix of T with respect to the standard basis.
4. Let S be an invertible linear map on a finite-dimensional vector space V and $\left\{e_{i}\right\}_{i=1}^{n}$ a basis of V. Show that $\left\{S e_{i}\right\}_{i=1}^{n}$ is also a basis of V and that

$$
\mathcal{M}\left(I,\left\{S e_{i}\right\},\left\{e_{i}\right\}\right)=\mathcal{M}\left(S,\left\{e_{i}\right\}\right) .
$$

