Math 307 Homework
 October 12, 2015

1. Let $\mathcal{B}=\left(1, x, x^{2}\right)$ and let $\mathcal{B}^{\prime}=\left(1, x, \frac{3}{2} x^{2}-\frac{1}{2}\right)$ in $\mathcal{P}_{2}(\mathbb{R})$. Find the change of basis matrices $[\boldsymbol{I}]_{\mathcal{B}, \mathcal{B}^{\prime}}$ and $[\boldsymbol{I}]_{\mathcal{B}^{\prime}, \mathcal{B}}$.
2. Let $\mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
(a) Find all the eigenvalues and eigenvectors of \mathbf{A}.

Hint: You can just work directly with the definition here: suppose that $\mathbf{A}\left[\begin{array}{l}x \\ y\end{array}\right]=\lambda\left[\begin{array}{l}x \\ y\end{array}\right]$ and see what you can say about x, y, and λ. Or you can think about under what circumstances $\mathbf{A}-\lambda \mathbf{I}_{n}$ has rank smaller than 2.
(b) Prove that \mathbf{A} is not diagonalizable (no matter what \mathbb{F} is).
3. Let $\boldsymbol{P}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map given by orthogonal projection onto the line $y=-x$.
(a) Find a basis \mathcal{B} of \mathbb{R}^{2} such that $[\boldsymbol{P}]_{\mathcal{B}}$ is diagonal.
(b) Compute the change of basis matrices $[\boldsymbol{I}]_{\mathcal{B}, \mathcal{E}}$ and $[\boldsymbol{I}]_{\mathcal{E}, \mathcal{B}}$ (make sure you're clear about which is which!).
(c) Find the matrix $[\boldsymbol{P}]_{\mathcal{E}}$ of \boldsymbol{P} with respect to the standard basis.

