Math 307 Homework October 12, 2015

- 1. Let $\mathcal{B} = (1, x, x^2)$ and let $\mathcal{B}' = (1, x, \frac{3}{2}x^2 \frac{1}{2})$ in $\mathcal{P}_2(\mathbb{R})$. Find the change of basis matrices $[\mathbf{I}]_{\mathcal{B},\mathcal{B}'}$ and $[\mathbf{I}]_{\mathcal{B}',\mathcal{B}}$.
- 2. Let $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
 - (a) Find all the eigenvalues and eigenvectors of **A**.

Hint: You can just work directly with the definition here: suppose that $\mathbf{A}\begin{bmatrix} x\\ y \end{bmatrix} = \lambda \begin{bmatrix} x\\ y \end{bmatrix}$ and see what you can say about $x, y, \text{ and } \lambda$. Or you can think about under what circumstances $\mathbf{A} - \lambda \mathbf{I}_n$ has rank smaller than 2.

- (b) Prove that \mathbf{A} is not diagonalizable (no matter what \mathbb{F} is).
- 3. Let $\mathbf{P} : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map given by orthogonal projection onto the line y = -x.
 - (a) Find a basis \mathcal{B} of \mathbb{R}^2 such that $[\boldsymbol{P}]_{\mathcal{B}}$ is diagonal.
 - (b) Compute the change of basis matrices $[I]_{\mathcal{B},\mathcal{E}}$ and $[I]_{\mathcal{E},\mathcal{B}}$ (make sure you're clear about which is which!).
 - (c) Find the matrix $[\mathbf{P}]_{\mathcal{E}}$ of \mathbf{P} with respect to the standard basis.