Math 307 Homework October 16, 2015

1. (a) Prove that if V is a real inner product space, then

$$
\langle v, w\rangle=\frac{1}{4}\left(\|v+w\|^{2}-\|v-w\|^{2}\right)
$$

for each $v, w \in V$.
(b) Prove that if V is a complex inner product space, then

$$
\langle v, w\rangle=\frac{1}{4}\left(\|v+w\|^{2}-\|v-w\|^{2}+i\|v+i w\|^{2}-i\|v-i w\|^{2}\right)
$$

for each $v, w \in V$.
2. Equip $C([0,2 \pi])$ with the inner product

$$
\langle f, g\rangle=\int_{0}^{2 \pi} f(x) g(x) d x
$$

Let $f(x)=\sin x$ and $g(x)=\cos x$. Compute each of the following:
(a) $\|f\|$
(b) $\|g\|$
(c) $\langle f, g\rangle$
(d) $\|a f+b g\|$, where $a, b \in \mathbb{R}$ are constants.

Hint: After doing the first three parts, you shouldn't need to do any integrals in the last part.
3. Prove that

$$
\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+2 a_{2}^{2}+\cdots+n a_{n}^{2}\right)\left(b_{1}^{2}+\frac{b_{2}^{2}}{2}+\cdots+\frac{b_{n}^{2}}{n}\right)
$$

for all $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{R}$.
4. Suppose that V is a vector space, W is an inner product space, and $\boldsymbol{T}: V \rightarrow W$ is an isomorphism. For $v_{1}, v_{2} \in V$, define

$$
\left\langle v_{1}, v_{2}\right\rangle:=\left\langle\boldsymbol{T} v_{1}, \boldsymbol{T} v_{2}\right\rangle
$$

where the right hand side involves the given inner product on W. Prove that this defines an inner product on V.

