Math 307 Homework
 October 21, 2015

1. (a) Verify that

$$
\mathcal{B}=\left(\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]\right)
$$

is an orthonormal basis of

$$
U=\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, x+y+z=0\right\} .
$$

(b) Find the matrix with respect to \mathcal{B} of the linear map $\boldsymbol{T}: U \rightarrow U$ given by

$$
\boldsymbol{T}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
y \\
z \\
x
\end{array}\right] .
$$

2. A function of the form

$$
f(\theta)=\sum_{k=1}^{n} a_{k} \sin (k \theta)+\sum_{\ell=0}^{n} b_{\ell} \cos (\ell \theta)
$$

for $a_{1}, \ldots, a_{n}, b_{0}, \ldots, b_{m} \in \mathbb{R}$ is sometimes called a trigonometric polynomial. If we put the inner product

$$
\langle f, g\rangle=\int_{0}^{2 \pi} f(\theta) g(\theta) d \theta
$$

on the space of trigonometric polynomials, find the norm of f as written above. Hint: You should be able to do this without calculating any integrals - most of the work has already been done in Section 3.2 of the book!

