## Math 307 Homework <br> March 23, 2015

1. Apply the Gram-Schmidt process to $\left(1, x, x^{2}, x^{3}\right)$ to produce an orthonormal basis of $\mathcal{P}_{3}(\mathbb{R})$ with respect to the inner product

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

Warning: This is a different inner product than in the example on p. 181.
Hint: It will simplify things to observe beforehand that

$$
\int_{-1}^{1} x^{k} d x= \begin{cases}0 & \text { if } k \text { is odd } \\ \frac{2}{k+1} & \text { if } k \text { is even }\end{cases}
$$

2. Compute the QR decomposition of $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
