Math 307 Homework October 28, 2015

1. Show that the operator norm $\|T\|$ of a linear map T is the smallest constant C such that

$$\|\boldsymbol{T}\boldsymbol{v}\| \le C \|\boldsymbol{v}\|$$

for all $v \in V$.

- 2. Prove that none of the following norms is associated to any inner product:
 - (a) The ℓ^1 norm on \mathbb{R}^2 .
 - (b) The supremum norm on C([0, 1]).
 - (c) The operator norm on $M_2(\mathbb{R})$.
- 3. Prove that if $\mathbf{A} \in \mathcal{M}_{m,n}(\mathbb{R})$ has rank 1, then $\|\mathbf{A}\| = \|\mathbf{A}\|_F$.

Hint: As you saw on a previous homework, if **A** has rank 1, then $\mathbf{A} = \mathbf{v}\mathbf{w}^{\mathrm{T}}$ for some nonzero vectors $\mathbf{v} \in \mathbb{R}^{m}$ and $\mathbf{w} \in \mathbb{R}^{n}$. You can compute $\mathbf{A}\mathbf{x}$ and $\|\mathbf{A}\|_{F}$ explicitly in terms of \mathbf{v} and \mathbf{w} .

Then show that $\|\mathbf{A}\| \leq \|\mathbf{A}\|_F$ by using the Cauchy–Schwarz inequality to show that $\|\mathbf{A}\mathbf{x}\| \leq \|\mathbf{A}\|_F \|\mathbf{x}\|$ for every $\mathbf{x} \in \mathbb{R}^n$.

Finally, show that $\|\mathbf{A}\| \ge \|\mathbf{A}\|_F$ by finding a specific unit vector $\mathbf{x} \in \mathbb{R}^n$ with $\|\mathbf{A}\mathbf{x}\| \ge \|\mathbf{A}\|_F$.