1. Show that the operator norm \(\|T\| \) of a linear map \(T \) is the smallest constant \(C \) such that

\[
\|Tv\| \leq C\|v\|
\]

for all \(v \in V \).

2. Prove that none of the following norms is associated to any inner product:

 (a) The \(\ell^1 \) norm on \(\mathbb{R}^2 \).
 (b) The supremum norm on \(C([0, 1]) \).
 (c) The operator norm on \(M_2(\mathbb{R}) \).

3. Prove that if \(A \in M_{m,n}(\mathbb{R}) \) has rank 1, then \(\|A\| = \|A\|_F \).

 *Hint: As you saw on a previous homework, if \(A \) has rank 1, then \(A = vw^T \) for some nonzero vectors \(v \in \mathbb{R}^m \) and \(w \in \mathbb{R}^n \). You can compute \(Ax \) and \(\|A\|_F \) explicitly in terms of \(v \) and \(w \).

 Then show that \(\|A\| \leq \|A\|_F \) by using the Cauchy–Schwarz inequality to show that \(\|Ax\| \leq \|A\|_F \|x\| \) for every \(x \in \mathbb{R}^n \).

 Finally, show that \(\|A\| \geq \|A\|_F \) by finding a specific unit vector \(x \in \mathbb{R}^n \) with \(\|Ax\| \geq \|A\|_F \).