Math 307 Homework October 30, 2015

- 1. Suppose that $\mathbf{U} \in \mathcal{M}_n(\mathbb{C})$ is unitary.
 - (a) Compute $\|\mathbf{U}\|$.
 - (b) Compute $\|\mathbf{U}\|_{F}$.
- 2. Suppose that $\mathbf{U} \in \mathrm{M}_m(\mathbb{C})$ and $\mathbf{V} \in \mathrm{M}_n(C)$ are unitary, and $\mathbf{A} \in \mathrm{M}_{m,n}(\mathbb{C})$. Prove that

$$\|\mathbf{U}\mathbf{A}\mathbf{V}\| = \|\mathbf{A}\|$$
 and $\|\mathbf{U}\mathbf{A}\mathbf{V}\|_F = \|\mathbf{A}\|_F$.

- 3. Find the QR decomposition of $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.
- 4. The $n \times n$ **DFT matrix** (for **discrete Fourier transform**) is the matrix $\mathbf{F} \in M_n(\mathbb{C})$ with entries

$$f_{jk} = \frac{1}{\sqrt{n}} \omega^{jk},$$

where $\omega = e^{2\pi i/n} = \cos(2\pi/n) + i\sin(2\pi/n)$. Prove that **F** is unitary.

Hints: If you're not accustomed to complex exponentials, here's what you need to know about them for this problem:

- If $x, y \in \mathbb{R}$ then $e^{i(x+y)} = e^{ix}e^{iy}$. In particular, $e^{ikx} = (e^{ix})^k$ if k is a positive integer.
- $e^{2\pi i} = 1$, so here $\omega^n = 1$, but $e^{2\pi i k/n} \neq 1$ for k = 1, ..., n 1.
- If $x \in \mathbb{R}$, then $\overline{e^{ix}} = e^{-ix}$.

The following identity is also useful here:

$$\sum_{k=0}^{n-1} z^k = \frac{1-z^n}{1-z}$$

for any $z \in \mathbb{C}$ with $z \neq 1$. (This can be proved by simply multiplying both sides by 1 - z.)