Math 307 Homework
 October 7, 2015

1. Let P be the plane

$$
\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, 3 x-2 y+z=0\right\} .
$$

(a) Find a basis for P.
(b) Determine whether each of the following vectors is in P. For each one that is, give its coordinate representation in terms of your basis.
i. $\left[\begin{array}{l}1 \\ 2 \\ 5\end{array}\right]$
ii. $\left[\begin{array}{l}1 \\ 3 \\ 3\end{array}\right]$
iii. $\left[\begin{array}{l}-1 \\ -2 \\ -1\end{array}\right]$
2. (a) Show that $\mathcal{B}=\left(1, x, \frac{3}{2} x^{2}-\frac{1}{2}\right)$ is a basis of $\mathcal{P}_{2}(\mathbb{R})$.
(b) Find the coordinate representation of x^{2} with respect to \mathcal{B}.
(c) Let $\boldsymbol{D}: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R})$ be the derivative operator. Find the coordinate representation of \boldsymbol{D} with respect to \mathcal{B} (i.e., with the same basis \mathcal{B} on both the domain and the codomain). Use it to calculate $\frac{d}{d x}\left[x^{2}\right]$.

