Math 307 Homework October 7, 2015

1. Let P be the plane

$$\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \middle| 3x - 2y + z = 0 \right\}.$$

- (a) Find a basis for P.
- (b) Determine whether each of the following vectors is in P. For each one that is, give its coordinate representation in terms of your basis.

i.
$$\begin{bmatrix} 1\\2\\5 \end{bmatrix}$$
ii.
$$\begin{bmatrix} 1\\3\\3 \end{bmatrix}$$
iii.
$$\begin{bmatrix} -1\\-2\\-1 \end{bmatrix}$$

- 2. (a) Show that $\mathcal{B} = (1, x, \frac{3}{2}x^2 \frac{1}{2})$ is a basis of $\mathcal{P}_2(\mathbb{R})$.
 - (b) Find the coordinate representation of x^2 with respect to \mathcal{B} .
 - (c) Let $\boldsymbol{D}: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ be the derivative operator. Find the coordinate representation of \boldsymbol{D} with respect to \mathcal{B} (i.e., with the same basis \mathcal{B} on both the domain and the codomain). Use it to calculate $\frac{d}{dx}[x^2]$.