1. Prove that if \mathbb{F} is a field with only finitely many elements, then \mathbb{F} is not algebraically closed.

 Hint: Find a polynomial over \mathbb{F} such that every element of \mathbb{F} is a root, and add 1.

2. Suppose that $x \in \mathbb{F}^n$ is an eigenvector of $A \in M_n(\mathbb{F})$ with eigenvalue λ, and let $p(x)$ be any polynomial with coefficients in \mathbb{F}.

 (a) Prove that x is also an eigenvector of $p(A)$ with eigenvalue $p(\lambda)$.
 (b) Prove that if $p(A) = 0$, then $p(\lambda) = 0$.