Math 307 Homework November 18, 2015

1. Prove that if \mathbb{F} is a field with only finitely many elements, then \mathbb{F} is not algebraically closed.

Hint: Find a polynomial over \mathbb{F} such that every element of \mathbb{F} is a root, and add 1.

- 2. Suppose that $\mathbf{x} \in \mathbb{F}^n$ is an eigenvector of $\mathbf{A} \in \mathcal{M}_n(\mathbb{F})$ with eigenvalue λ , and let p(x) be any polynomial with coefficients in \mathbb{F} .
 - (a) Prove that **x** is also an eigenvector of $p(\mathbf{A})$ with eigenvalue $p(\lambda)$.
 - (b) Prove that if $p(\mathbf{A}) = \mathbf{0}$, then $p(\lambda) = 0$.