Math 307 Homework
 November 2, 2015

1. Let V and W be finite-dimensional inner product spaces, and let $T \in \mathcal{L}(V, W)$. Show that

$$
U:=\{v \in V:\|\boldsymbol{T} v\|=\|\boldsymbol{T}\|\|v\|\}
$$

is a subspace of V.
Hint: Remember that if you have two non-zero vectors v_{1}, v_{2}, you can write $v_{2}=a v_{1}+b u$, where $\left\langle u, v_{1}\right\rangle=0$.
2. Prove that if the subspace U of V defined above has dimension at least 2 , then $\sigma_{2}=\sigma_{1}$ (where $\sigma_{1} \geq \sigma_{2}$ are the first two singular values of $\left.\boldsymbol{T}\right)$.

