Math 307 Homework November 2, 2015

1. Let V and W be finite-dimensional inner product spaces, and let $T \in \mathcal{L}(V, W)$. Show that

$$U := \{ v \in V : \|Tv\| = \|T\| \|v\| \}$$

is a subspace of V.

Hint: Remember that if you have two non-zero vectors v_1, v_2 , you can write $v_2 = av_1 + bu$, where $\langle u, v_1 \rangle = 0$.

2. Prove that if the subspace U of V defined above has dimension at least 2, then $\sigma_2 = \sigma_1$ (where $\sigma_1 \ge \sigma_2$ are the first two singular values of **T**).