Math 307 Homework November 20, 2015

1. Let $\mathbf{A} \in M_n(\mathbb{C})$ and let $\varepsilon > 0$. Show that there is a $\mathbf{B} \in M_n(\mathbb{C})$ with *n* distinct eigenvalues such that $\|\mathbf{A} - \mathbf{B}\| \leq \varepsilon$.

Hint: First consider the case where \mathbf{A} is upper triangular, then use the Schur decomposition.

- 2. (a) Prove that if $\mathbf{A} \in M_n(\mathbb{C})$ is upper triangular and normal, then \mathbf{A} is diagonal.
 - (b) Use this fact and the Schur decomposition to prove the spectral theorem for normal matrices.
- 3. Show that if $D : M_n(\mathbb{F}) \to \mathbb{F}$ is an alternating, multilinear function, then you can add any linear combination of the columns to any one column of a matrix A without changing the value of D(A).