1. Let $A \in M_n(\mathbb{C})$ and let $\varepsilon > 0$. Show that there is a $B \in M_n(\mathbb{C})$ with n distinct eigenvalues such that $\|A - B\| \leq \varepsilon$.

Hint: First consider the case where A is upper triangular, then use the Schur decomposition.

2. (a) Prove that if $A \in M_n(\mathbb{C})$ is upper triangular and normal, then A is diagonal.

(b) Use this fact and the Schur decomposition to prove the spectral theorem for normal matrices.

3. Show that if $D : M_n(\mathbb{F}) \rightarrow \mathbb{F}$ is an alternating, multilinear function, then you can add any linear combination of the columns to any one column of a matrix A without changing the value of $D(A)$.