Math 307 Homework
 November 25, 2015

1. Calculate

$$
\operatorname{det}\left[\begin{array}{cccc}
1 & 0 & -1 & 3 \\
2 & -3 & -2 & 5 \\
3 & 0 & -1 & 9 \\
2 & -3 & -2 & 6
\end{array}\right]
$$

2. (a) Show that if $\mathbf{U} \in \mathrm{M}_{n}(\mathbb{C})$ is unitary, then $|\operatorname{det} \mathbf{U}|=1$.
(b) Show that if $\sigma_{1}, \ldots, \sigma_{n}$ are the singular values of $\mathbf{A} \in \mathrm{M}_{n}(\mathbb{C})$, then

$$
|\operatorname{det} \mathbf{A}|=\sigma_{1} \cdots \sigma_{n} .
$$

3. Suppose that $\mathbf{A} \in \mathrm{M}_{m+n}(\mathbb{F})$ has the form

$$
\mathrm{A}=\left[\begin{array}{ll}
\mathrm{B} & \mathrm{C} \\
0 & \mathrm{D}
\end{array}\right]
$$

for some $\mathbf{B} \in \mathrm{M}_{m}(\mathbb{F}), \mathbf{D} \in \mathrm{M}_{n}(\mathbb{F})$, and $\mathbf{C} \in \mathrm{M}_{m, n}(\mathbb{F})$. Show that $\operatorname{det} \mathbf{A}=$ $\operatorname{det} \mathbf{B} \operatorname{det} \mathbf{D}$.

Hint: Prove this for fixed m by induction on n.

