Math 307 Homework November 4, 2015

- 1. Show that $\mathbf{A} \in M_n(\mathbb{C})$ is unitary if and only if $\sigma_j = 1$ for $j = 1, \ldots, n$.
- 2. Show that if $\mathbf{A} = \mathbf{diag}(\lambda_1, \dots, \lambda_n)$, then the singular values of \mathbf{A} are $|\lambda_1|, \dots, |\lambda_n|$ (though not necessarily in the same order).
- 3. Prove that for any $\mathbf{A} \in \mathcal{M}_{m,n}(\mathbb{C})$,

$$\|\mathbf{A}\| \le \|\mathbf{A}\|_F \le \sqrt{\min\{m,n\}} \|\mathbf{A}\|.$$

- 4. For each $z \in \mathbb{C}$, let $\mathbf{A}_z = \begin{bmatrix} 1 & z \\ 0 & 2 \end{bmatrix}$.
 - (a) Find all the eigenvalues of \mathbf{A}_z , and show that they don't depend on z.
 - (b) Show that the singular values of \mathbf{A}_z do depend on z. Hint: You don't actually need to calculate the singular values of \mathbf{A}_z . Use something related to the singular values which is simpler to compute.