Math 307 Homework
 November 6, 2015

1. Prove that if $\mathbf{A} \in \mathrm{M}_{n}(\mathbb{C})$ has singular values $\sigma_{1}, \ldots, \sigma_{n}$, then

$$
|\operatorname{tr} \mathbf{A}| \leq \sum_{j=1}^{n} \sigma_{j}
$$

Hint: Use SVD (in the form of Corollary 3.31) and the Cauchy-Schwarz inequality.
2. Suppose that V is a complex inner product space, $\boldsymbol{T} \in \mathcal{L}(V)$, and $\boldsymbol{T}^{*}=-\boldsymbol{T}$. Prove that every eigenvalue of \boldsymbol{T} is purely imaginary (that is, of the form $i a$ for some $a \in \mathbb{R}$).
3. Let V and W be finite dimensional inner product spaces and let $\boldsymbol{T} \in \mathcal{L}(V, W)$. Prove that

$$
\operatorname{ker} \boldsymbol{T}^{*}=(\text { range } \boldsymbol{T})^{\perp}
$$

