Math 307 Homework
 November 9, 2015

1. Let V be a finite dimensional complex inner product space. Prove that if $\boldsymbol{T} \in$ $\mathcal{L}(V)$ is normal, then there is an operator $\boldsymbol{S} \in \mathcal{L}(V)$ such that $\boldsymbol{T}=\boldsymbol{S}^{2}$.

Hint: Every complex number has a complex square root.
2. Prove that if $\mathbf{A} \in \mathrm{M}_{n}(\mathbb{F})$ is Hermitian, then there are an orthonormal basis $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ of \mathbb{F}^{n} and numbers $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ such that

$$
\mathbf{A}=\sum_{j=1}^{n} \lambda_{j} \mathbf{v}_{j} \mathbf{v}_{j}^{*}
$$

3. Find the singular value decomposition of $\left[\begin{array}{cc}2 & 1 \\ 2 & -1\end{array}\right]$.

Hint: The necessary tools are in Proposition 3.37 and its proof.

