## Math 307 Homework

September 14, 2015

1. Consider a linear system in matrix form:

$$
\mathbf{A x}=\mathbf{b}
$$

where $\mathbf{A} \in \mathrm{M}_{m, n}(\mathbb{F})$ and $\mathbf{b} \in \mathbb{F}^{m}$ are given. Suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{F}^{n}$ are both solutions. Under what conditions is $\mathbf{x}+\mathbf{y}$ also a solution?
Remark: You might recognize this as a question we've encountered before. Don't just refer to the earlier answer; use what you've now learned about the matrix form of a linear system to answer the question more easily.
2. Find a $2 \times 2$ matrix with the vector $\left[\begin{array}{l}2 \\ 3\end{array}\right]$ as an eigenvector. Demonstrate that you are right, identify the eigenvalue, and explain how you found the matrix.
3. Let $\boldsymbol{P}_{z}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the function which orthogonally projects onto the $x$ - $y$ plane (that is, the set of vectors $\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}$ with $z=0$ ). Is $\boldsymbol{P}_{z}$ linear? If so, prove it; if not, explain why not.

