1. Consider the linear map $T : \mathbb{R}^2 \to \mathbb{R}^2$ whose matrix is

$$\begin{bmatrix} -1 & 3 \\ 0 & 2 \end{bmatrix}.$$

(a) Show that $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ are eigenvectors, and determine the corresponding eigenvalues.

(b) Draw the image of the unit square $\{(x, y) | 0 \leq x, y \leq 1\}$ under T.

2. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the map defined by first rotating counterclockwise by θ and then reflecting across the line $y = x$. Find the matrix of T.

3. Define $T : C[0, \infty) \to C[0, \infty)$ by

$$Tf(x) = \int_0^x f(y) \, dy.$$

(Note that by the Fundamental Theorem of Calculus, Tf is an antiderivative of f with $Tf(0) = 0$.)

(a) Show that T is linear.

(b) Show that T is an integral operator (as discussed in class), although with a discontinuous kernel k.

1