Math 307 Homework September 16, 2015

1. Consider the linear map $T : \mathbb{R}^2 \to \mathbb{R}^2$ whose matrix is

$$\begin{bmatrix} -1 & \frac{3}{2} \\ 0 & 2 \end{bmatrix}$$

- (a) Show that $\begin{bmatrix} 1\\0 \end{bmatrix}$ and $\begin{bmatrix} 1\\2 \end{bmatrix}$ are eigenvectors, and determine the corresponding eigenvalues.
- (b) Draw the image of the unit square $\{(x, y) | 0 \le x, y \le 1\}$ under **T**.
- 2. Let $\mathbf{T} : \mathbb{R}^2 \to \mathbb{R}^2$ be the map defined by first rotating counterclockwise by θ and then reflecting across the line y = x. Find the matrix of \mathbf{T} .
- 3. Define $\boldsymbol{T}: C[0,\infty) \to C[0,\infty)$ by

$$Tf(x) = \int_0^x f(y) \, dy$$

(Note that by the Fundamental Theorem of Calculus, Tf is an antiderivative of f with Tf(0) = 0.)

- (a) Show that T is linear.
- (b) Show that T is an integral operator (as discussed in class), although with a discontinuous kernel k.