Math 307 Homework

September 16, 2015

1. Consider the linear map $\boldsymbol{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ whose matrix is

$$
\left[\begin{array}{cc}
-1 & \frac{3}{2} \\
0 & 2
\end{array}\right]
$$

(a) Show that $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ are eigenvectors, and determine the corresponding eigenvalues.
(b) Draw the image of the unit square $\{(x, y) \mid 0 \leq x, y \leq 1\}$ under \boldsymbol{T}.
2. Let $\boldsymbol{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the map defined by first rotating counterclockwise by θ and then reflecting across the line $y=x$. Find the matrix of \boldsymbol{T}.
3. Define $\boldsymbol{T}: C[0, \infty) \rightarrow C[0, \infty)$ by

$$
\boldsymbol{T} f(x)=\int_{0}^{x} f(y) d y
$$

(Note that by the Fundamental Theorem of Calculus, $\boldsymbol{T} f$ is an antiderivative of f with $\boldsymbol{T} f(0)=0$.)
(a) Show that \boldsymbol{T} is linear.
(b) Show that \boldsymbol{T} is an integral operator (as discussed in class), although with a discontinuous kernel k.

