Math 307 Homework September 18, 2015

- 1. Find the matrix of the linear map $T : \mathbb{R}^2 \to \mathbb{R}^2$ which first reflects across the *y*-axis, then rotates counterclockwise by $\pi/4$ radians, then stretches by a factor of 2 in the *y*-direction.
- 2. Compute

[1]	0	3^{-1}	
0	1	1	
$\lfloor -1 \rfloor$	0	2	

- 3. An $n \times n$ matrix **A** is called **upper triangular** if $a_{ij} = 0$ whenever i > j.
 - (a) Suppose that $\mathbf{A}, \mathbf{B} \in M_n(\mathbb{F})$ are both upper triangular. Prove that \mathbf{AB} is also upper triangular. What are the diagonal entries of \mathbf{AB} ? *Warning:* Don't be tricked by this into thinking that $\mathbf{AB} = \mathbf{BA}$ for upper triangular matrices!
 - (b) Suppose that $\mathbf{A} \in M_n(\mathbb{F})$ is upper triangular and invertible. Prove that \mathbf{A}^{-1} is also upper triangular.

Hint: Think about the row operations used in computing \mathbf{A}^{-1} via Gaussian elimination.

4. Suppose that $\mathbf{A} \in \mathrm{M}_{m,n}(\mathbb{F})$ is **right-invertible**, meaning that there is a $\mathbf{B} \in \mathrm{M}_{n,m}(\mathbb{F})$ such that $\mathbf{AB} = \mathbf{I}_m$. Show that $m \leq n$.

Hint: Show that given any $\mathbf{b} \in \mathbb{F}^m$, the $m \times n$ linear system

 $\mathbf{A}\mathbf{x}=\mathbf{b}$

is consistent, and use Theorem 1.2.