Math 307 Homework

September 18, 2015

1. Find the matrix of the linear map $\boldsymbol{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which first reflects across the y-axis, then rotates counterclockwise by $\pi / 4$ radians, then stretches by a factor of 2 in the y-direction.
2. Compute

$$
\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & 1 \\
-1 & 0 & 2
\end{array}\right]^{-1}
$$

3. An $n \times n$ matrix \mathbf{A} is called upper triangular if $a_{i j}=0$ whenever $i>j$.
(a) Suppose that $\mathbf{A}, \mathbf{B} \in \mathrm{M}_{n}(\mathbb{F})$ are both upper triangular. Prove that $\mathbf{A B}$ is also upper triangular. What are the diagonal entries of $\mathbf{A B}$?
Warning: Don't be tricked by this into thinking that $\mathbf{A B}=\mathbf{B A}$ for upper triangular matrices!
(b) Suppose that $\mathbf{A} \in \mathrm{M}_{n}(\mathbb{F})$ is upper triangular and invertible. Prove that \mathbf{A}^{-1} is also upper triangular.
Hint: Think about the row operations used in computing \mathbf{A}^{-1} via Gaussian elimination.
4. Suppose that $\mathbf{A} \in \mathrm{M}_{m, n}(\mathbb{F})$ is right-invertible, meaning that there is a $\mathbf{B} \in$ $\mathrm{M}_{n, m}(\mathbb{F})$ such that $\mathbf{A B}=\mathbf{I}_{m}$. Show that $m \leq n$.
Hint: Show that given any $\mathbf{b} \in \mathbb{F}^{m}$, the $m \times n$ linear system

$$
A x=b
$$

is consistent, and use Theorem 1.2.

