Math 307 Homework
 September 2, 2015

1. Determine which of the following are and are not subspaces of the given vector space, and justify your answers.
(a) The x axis in \mathbb{R}^{3}.
(b) The set $\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x, y \geq 0\right\}$ in \mathbb{R}^{2} (i.e., the first quadrant of the plane).
(c) The set $\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x, y \geq 0\right\} \cup\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x, y \leq 0\right\}$ in \mathbb{R}^{2} (i.e., the first and third quadrants of the plane).
(d) The set of solutions of the linear system

$$
\begin{aligned}
x-y+2 z & =4 \\
2 x-5 z & =-1 .
\end{aligned}
$$

2. (a) Show that \mathbb{C} is a vector space over \mathbb{R}.
(b) Show that \mathbb{Q} is not a vector space over \mathbb{R}.
3. The trace of an $n \times n$ matrix $\mathbf{A}=\left[a_{i j}\right]_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ is

$$
\operatorname{tr} \mathbf{A}=\sum_{i=1}^{n} a_{i i} .
$$

Show that $S=\left\{\mathbf{A} \in \mathrm{M}_{n}(\mathbb{F}) \mid \operatorname{tr} \mathbf{A}=0\right\}$ is a subspace of $\mathrm{M}_{n}(\mathbb{F})$.
4. Let V be a vector space, and suppose that U and W are both subspaces of V. Show that

$$
U \cap W:=\{v \mid v \in U \text { and } v \in W\}
$$

is a subspace of V.

