Math 307 Homework September 21, 2015

- 1. Prove that if a list of vectors $(\mathbf{v}_1, \ldots, \mathbf{v}_n)$ spans \mathbb{F}^m , then $m \leq n$.
- 2. Is it true that the set of all eigenvectors of a linear map $T \in \mathcal{L}(V)$, together with the 0 vector, must be a subspace of V? Give a proof or a counterexample.
- 3. Let **D** be the differentiation operator on $C^{\infty}(\mathbb{R})$, the space of infinitely differentiable functions on \mathbb{R} . What is the kernel of **D**?
- 4. If U_1 and U_2 are both subspaces of V, then we define

$$U_1 + U_2 := \{ u_1 + u_2 | u_1 \in U_1, u_2 \in U_2 \}.$$

(a) Suppose that $\boldsymbol{S}, \boldsymbol{T} \in \mathcal{L}(V, W)$. Prove that

 $\operatorname{range}(\boldsymbol{S} + \boldsymbol{T}) \subseteq (\operatorname{range} \boldsymbol{S}) + (\operatorname{range} \boldsymbol{T}).$

(b) Suppose that $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{m,n}(\mathbb{F})$. Prove that

$$C(\mathbf{A} + \mathbf{B}) \subseteq C(\mathbf{A}) + C(\mathbf{B}).$$