Math 307 Homework September 25, 2015

- 1. Two *nonzero* vectors $v, w \in V$ are called **collinear** if there is a scalar $c \in \mathbb{F}$ such that v = cw.
 - (a) Given two nonzero vectors $v, w \in V$, prove that (v, w) is linearly dependent if and only if v and w are collinear.
 - (b) Give an example of a list of three linearly dependent vectors such that no two are collinear.
- 2. Determine whether each of the following lists of vectors in \mathbb{R}^3 is linearly independent.
 - $\begin{pmatrix} \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix} \end{pmatrix}$ • $\begin{pmatrix} \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix} \end{pmatrix}$
- 3. Suppose that $\mathbf{A} \in \mathcal{M}_n(\mathbb{F})$ is upper triangular and that all the diagonal entries are nonzero (i.e., $a_{ii} \neq 0$ for each i = 1, ..., n). Prove that ker $\mathbf{A} = \{\mathbf{0}\}$.
- 4. Let $n \geq 1$ be an integer, and suppose that for every $x \in \mathbb{R}$,

$$\sum_{k=1}^{n} a_k \sin(kx) = 0$$

where constants $a_1, \ldots, a_n \in \mathbb{R}$ are constants. Prove that $a_1 = \cdots = a_n = 0$.

Hint: Consider the linear map $D^2 : C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ given by $D^2 f = f''$, where $C^{\infty}(\mathbb{R})$ is the space of infinitely differentiable functions on \mathbb{R} , and use Theorem 2.7.