Math 307 Homework
 September 25, 2015

1. Two nonzero vectors $v, w \in V$ are called collinear if there is a scalar $c \in \mathbb{F}$ such that $v=c w$.
(a) Given two nonzero vectors $v, w \in V$, prove that (v, w) is linearly dependent if and only if v and w are collinear.
(b) Give an example of a list of three linearly dependent vectors such that no two are collinear.
2. Determine whether each of the following lists of vectors in \mathbb{R}^{3} is linearly independent.

$$
\begin{aligned}
& \text { • }\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]\right) \\
& \bullet\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]\right)
\end{aligned}
$$

3. Suppose that $\mathbf{A} \in \mathrm{M}_{n}(\mathbb{F})$ is upper triangular and that all the diagonal entries are nonzero (i.e., $a_{i i} \neq 0$ for each $i=1, \ldots, n$). Prove that ker $\mathbf{A}=\{0\}$.
4. Let $n \geq 1$ be an integer, and suppose that for every $x \in \mathbb{R}$,

$$
\sum_{k=1}^{n} a_{k} \sin (k x)=0
$$

where constants $a_{1}, \ldots, a_{n} \in \mathbb{R}$ are constants. Prove that $a_{1}=\cdots=a_{n}=0$.
Hint: Consider the linear map $\boldsymbol{D}^{2}: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ given by $\boldsymbol{D}^{2} f=f^{\prime \prime}$, where $C^{\infty}(\mathbb{R})$ is the space of infinitely differentiable functions on \mathbb{R}, and use Theorem 2.7.

