Math 307 Homework
 September 4, 2015

1. Let $C(\mathbb{R})$ be the vector space (over \mathbb{R}) of continous functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Define $T: C(\mathbb{R}) \rightarrow C(\mathbb{R})$ by

$$
[T f](x)=f(x) \cos (x)
$$

Show that T is a linear map.
2. Give an explicit isomorphism between the set of solutions of the linear system (over \mathbb{R})

$$
\begin{array}{r}
w-x+0 y+3 z=0, \\
w-x+y+5 z=0, \\
2 w-2 x-y+4 z=0
\end{array}
$$

and \mathbb{R}^{2}.
3. Define $\boldsymbol{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
\boldsymbol{T}\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{l}
y \\
z \\
0
\end{array}\right] .
$$

(a) Is \boldsymbol{T} linear?
(b) Is \boldsymbol{T} injective?
(c) Is \boldsymbol{T} surjective?

Justify all your answers.
4. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, the line segment between \mathbf{x} and \mathbf{y} is the set

$$
L:=\{(1-t) \mathbf{x}+t \mathbf{y} \mid 0 \leq t \leq 1\} .
$$

Show that if $\boldsymbol{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is linear, then $\boldsymbol{T}(L)$ is also a line segment.
Remark: This is one way in which linear maps really do have something to do with lines.

