Group	Scribe		
Other group	members		

Group Quiz for Section 5.4

Show that if $\mathbf{S}, \mathbf{T} \in \mathcal{L}(V)$ are such that $\mathbf{ST} = \mathbf{TS}$, then for any eigenvalue λ of \mathbf{T} , \mathbf{S} restricts to a linear map from $Eig_{\lambda}(\mathbf{T})$ to itself. *Hint:* The issue here is to show that the restriction of \mathbf{S} to $Eig_{\lambda}(\mathbf{T})$ maps into $Eig_{\lambda}(\mathbf{T})$; i.e., what you need to show is that if $v \in Eig_{\lambda}(\mathbf{T})$, then $\mathbf{S}v \in Eig_{\lambda}(\mathbf{T})$ as well.