In class, we defined a function $\mu : \mathcal{B} \times \Omega \to \mathbb{R}$ so that for each $r \in \mathbb{Q}$,

$$\mu((-\infty, r], \omega) = \mathbb{P}[X \le r|\mathcal{G}]_{\omega}$$

with probability 1.

- (a) Let \mathcal{L} be the class of \mathcal{B} -sets H such that $\mu(H, \cdot)$ is \mathcal{G} -measurable. Show that \mathcal{L} is a λ -system, and prove that this means that $\mu(H, \cdot)$ is \mathcal{G} -measurable for every $H \in \mathcal{B}$.
- (b) Since $\mu((-\infty, r], \omega) = \mathbb{P}[X \leq r|\mathfrak{G}]_{\omega}$, it follows that for each fixed $G \in \mathfrak{G}$,

$$\int_{G} \mu(H,\omega) d\mathbb{P}(\omega) = \mathbb{P}[\{X \in H\} \cap G],$$

for every H of the form $(-\infty, r]$ for $r \in \mathbb{Q}$. Show that this means that the above equality holds for all $H \in \mathcal{B}$.