- 1. Prove (more carefully than I did in class) that if B(t) is a standard Brownian motion and τ is a stopping time, then $B(\tau)$ is \mathcal{F}_{τ} -measurable.
- 2. Let B(t) be a standard Brownian motion. Show that $B(t)^2 t$ is a martingale.
- 3. Let B(t) be a standard Brownian motion. Show that the following transformations of B are also Brownian motions (that is, they have independent centered Gaussian incremets with variance given by the length of the interval, and they have continuous sample paths):
 - (a) $B_c(t) := \frac{1}{c}B(c^2t)$, where c > 0(b) $\tilde{B}(t) := \begin{cases} tB\left(\frac{1}{t}\right), & t > 0; \\ 0, & t = 0. \end{cases}$