1. Show that if $Z_{t}=\left(X_{t}, Y_{t}\right)$ is a 2-dimensional Brownian motion (i.e., X_{t} and Y_{t} are independent Brownian motions) and $U \in \mathbb{O}(2)$, then $U Z_{t}$ is also a 2-dimensional Brownian motion.
2. For $0 \leq t-\epsilon$ and B a standard Brownian motion on \mathbb{R}, show that

$$
\mathbb{P}\left[\sup _{t-\epsilon \leq s \leq t}|B(t)-B(s)|>x\right] \leq 2 \mathbb{P}[|B(\epsilon)|>x] .
$$

