1. Suppose that $\|\cdot\|$ is a norm on \mathbb{C}^{n} such that the maximum volume ellipsoid inside the unit ball of $\|\cdot\|$ is the Euclidean unit ball (so in particular, $\|v\| \leq|v|$ for all $v \in \mathbb{C}^{n}$). Show by the following steps that there is an orthonormal basis $\left(v_{1}, \ldots, v_{n}\right)$ of \mathbb{C}^{n} such that $\left\|v_{j}\right\| \geq \frac{1}{2}$ for all $j \in\left\{1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
(a) Let $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be such that

$$
\operatorname{det}(T)=\max \left\{\operatorname{det}(S) \mid S: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, \max _{v \in \mathbb{C}^{n},|v| \leq 1}\|S v\| \leq 1\right\}
$$

Show that for any $S: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$,

$$
\operatorname{det}(T+\epsilon S) \leq \operatorname{det}(T)\|T+\epsilon S\|^{n}
$$

and that also

$$
\operatorname{det}(T+\epsilon S)=\operatorname{det}(T)\left(1+\epsilon \operatorname{tr}\left(T^{-1} S\right)+o(\epsilon)\right)
$$

(b) Show that this implies that $\operatorname{tr}\left(T^{-1} S\right) \leq n \max _{v \in \mathbb{C}^{n},|v| \leq 1}\|S v\|$.
(c) Let $P: \mathbb{C}^{n} \rightarrow V$ be orthogonal projection onto V, and let $S=T P$. Use the fact that $\operatorname{dim}(V)=\operatorname{tr}(P)$ to show that

$$
\max _{v \in \mathbb{C}^{n},|v| \leq 1}\|T P\| \geq \frac{\operatorname{dim}(V)}{n}
$$

(d) Choose the v_{j} inductively: let $\left|v_{1}\right|=1$ such that $\left\|T v_{1}\right\|=1$. Use the above to choose $v_{2} \in\left\langle v_{1}\right\rangle^{\perp}$ so that $\left\|T v_{2}\right\| \geq\left(\frac{n-1}{n}\right)$. Continue: show that this proves the claim.
2. Prove that if Z_{1}, \ldots, Z_{m} are i.i.d. standard Gaussian random variables, then there is a constant so that

$$
\mathbb{E}\left[\max _{1 \leq j \leq m}\left|Z_{j}\right|\right] \geq c \sqrt{\log (m)}
$$

