- 1. Suppose that $\|\cdot\|$ is a norm on \mathbb{C}^n such that the maximum volume ellipsoid inside the unit ball of $\|\cdot\|$ is the Euclidean unit ball (so in particular, $\|v\| \le |v|$ for all $v \in \mathbb{C}^n$). Show by the following steps that there is an orthonormal basis (v_1, \ldots, v_n) of \mathbb{C}^n such that $\|v_j\| \ge \frac{1}{2}$ for all $j \in \{1, \ldots, \lfloor \frac{n}{2} \rfloor\}$.
 - (a) Let $T: \mathbb{C}^n \to \mathbb{C}^n$ be such that

$$\det(T) = \max\left\{\det(S) \left| S : \mathbb{C}^n \to \mathbb{C}^n, \max_{v \in \mathbb{C}^n, |v| \le 1} \|Sv\| \le 1\right\}.$$

Show that for any $S : \mathbb{C}^n \to \mathbb{C}^n$,

$$\det(T + \epsilon S) \le \det(T) \|T + \epsilon S\|^n$$

and that also

$$\det(T + \epsilon S) = \det(T)(1 + \epsilon \operatorname{tr}(T^{-1}S) + o(\epsilon)).$$

- (b) Show that this implies that $\operatorname{tr}(T^{-1}S) \leq n \max_{v \in \mathbb{C}^n, |v| \leq 1} \|Sv\|$.
- (c) Let $P : \mathbb{C}^n \to V$ be orthogonal projection onto V, and let S = TP. Use the fact that $\dim(V) = \operatorname{tr}(P)$ to show that

$$\max_{v \in \mathbb{C}^n, |v| \le 1} \|TP\| \ge \frac{\dim(V)}{n}.$$

- (d) Choose the v_j inductively: let $|v_1| = 1$ such that $||Tv_1|| = 1$. Use the above to choose $v_2 \in \langle v_1 \rangle^{\perp}$ so that $||Tv_2|| \ge \left(\frac{n-1}{n}\right)$. Continue: show that this proves the claim.
- 2. Prove that if Z_1, \ldots, Z_m are i.i.d. standard Gaussian random variables, then there is a constant so that

$$\mathbb{E}[\max_{1 \le j \le m} |Z_j|] \ge c\sqrt{\log(m)}.$$