Math 492 Problem Set 1

1. Let $\left\{X_{i}\right\}_{i=1}^{n}$ and $\left\{X_{i}^{\prime}\right\}_{i=1}^{n}$ be $2 n$ i.i.d. random variables. Let J be uniformly distributed in $\{1, \ldots, n\}$. Show that if

$$
W=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} X_{j}
$$

and

$$
W^{\prime}=W-\frac{1}{\sqrt{n}} X_{J}+\frac{1}{\sqrt{n}} X_{J}^{\prime}
$$

then $\left(W, W^{\prime}\right)$ is an exchangeable pair.
2. Complete the proof of the Poincaré limit: let X be a uniform random point on $\sqrt{n} S^{n-1}$ and let

$$
W=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} X_{j} .
$$

Use Stein's abstract normal approximation theorem to show that there is a constant c, independent of dimension, such that

$$
d_{B L}(W, Z) \leq \frac{c}{\sqrt{n}}
$$

