1. Suppose that G is a finite group and $A < G$ is abelian. Prove that each irreducible representation (over \mathbb{C}) of G has dimension at most $[G : A]$.

Hint: If (V, ρ) is an irreducible representation of G, then ρ_A defines a representation of A. For an irreducible subrepresentation W of A, consider the subspaces $\rho(g)(W)$.

2. Let (V_i, ρ_i) be representations of finite groups G_i for $i = 1, 2$. The **tensor product** representation of $G_1 \times G_2$ is given by

$$\rho_1 \otimes \rho_2(g_1, g_2) = \rho_1(g_1) \otimes \rho_2(g_2) \in GL(V_1 \otimes V_2).$$

(a) Explain how this is related to, but different from, the tensor product of representations defined in class.

(b) Show that $\chi_{\rho_1 \otimes \rho_2}(g_1, g_2) = \chi_{\rho_1}(g_1) \chi_{\rho_2}(g_2)$.

3. Prove in detail that isomorphic representations have the same character.

4. Let χ_1, \ldots, χ_N be the characters of the distinct (up to isomorphism) irreducible representations of G. Show that if χ is the character of any representation of G, then

$$\chi = \sum_{i=1}^{N} n_i \chi_i$$

for some integers n_1, \ldots, n_N.