1. Consider the matrix \(A = \begin{bmatrix} 1/2 & 1 \\ 0 & 1/2 \end{bmatrix} \). Compute each of the following explicitly for \(k \geq 1 \), and discuss the behavior as \(k \to \infty \).

 (a) \(A^k \)

 (b) \(\rho(A^k) \)

 (c) \(\|A^k\|_{1 \to 1} \)

 (d) \(\|A^k\|_{\infty \to \infty} \)

 (e) \(\|A^k\|_{2 \to 2} \)

2. (a) Prove that if \(A \in M_n \) is normal, then \(\rho(A) = \|A\|_{2 \to 2} \) (the spectral norm of \(A \)).

 (b) Prove that the spectral radius \(\rho \) is not submultiplicative on \(M_n \) — that is, there exist \(A \) and \(B \) with \(\rho(AB) > \rho(A)\rho(B) \).

3. Let \(A \in M_n \) have singular values \(\sigma_1 \geq \cdots \geq \sigma_n \). Prove that if \(\lambda \) is any eigenvalue of \(A \), then \(\sigma_n \leq |\lambda| \leq \sigma_1 \).

4. Suppose \(A \in M_n \) is nonsingular, \(B \in M_n \) is singular, and \(\|\cdot\| \) is a submultiplicative norm on \(M_n \). Prove that

\[
\|A - B\| \geq \frac{1}{\|A^{-1}\|}.
\]

Thus there is a limit to how closely a given nonsingular matrix can be approximated by singular matrices.

Hint: Since

\[
A^{-1}B = A^{-1}[A - (A - B)] = I_n - A^{-1}(A - B)
\]

is singular, what can you say about \(A^{-1}(A - B) = I_n - A^{-1}B \)?