Explicit constructions of RIP matrices and related problems

Jean Bourgain1 Steven J. Dilworth2 Kevin Ford3 Sergei Konyagin4 Denka Kutzarova5

1Institute For Advanced Study
2University of South Carolina
3University of Illinois
4Steklov Mathematical Institute
5Bulgarian Academy of Sciences

August 2, 2010
RIP matrices

Definition

An $N \times n$ matrix (with $n < N$) Φ has the Restricted Isometry Property (RIP) of order k with constant δ if, for all k-sparse vectors x, we have

$$(1 - \delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + \delta)\|x\|_2^2.$$

Application: sparse signal recovery

- $x \in \mathbb{C}^N$ is a signal with at most k nonzero components
- $\Phi x \in \mathbb{C}^n$ is a lower dimensional linear measurement
- Candès, Romberg and Tao (2006) showed that given Φx, one can effectively recover x;
- It suffices, for sparse signal recovery, that Φ satisfies RIP with fixed constant $\delta < \sqrt{2} - 1$ (Candès, 2008).
Fundamental Problem

Given \(N, n \) (fix \(\delta = \frac{1}{3} \), say), find a RIP matrix \(\Phi \) with maximal \(k \) (Alternatively, minimize \(n \) given \(N, k \)).
Fundamental Problem

Given N, n (fix $\delta = \frac{1}{3}$, say), find a RIP matrix Φ with maximal k (Alternatively, minimize n given N, k).

Theorem (Kashin (1977); Candèes, Romberg, Tao (2006))

Suppose $n \leq N/2$. Choose entries of Φ as independent $\pm n^{-1/2}$ Bernouilli random variables. With positive probability, Φ will satisfy RIP of order k, for all $k \leq \frac{cn}{\log(N/n)}$.

Other random constructions given by Rudelson/Vershinin (2008), Mendelson, Pajor and Tomczak-Jaegermann (2007).
Fundamental Problem

Given N, n (fix $\delta = \frac{1}{3}$, say), find a RIP matrix Φ with maximal k (Alternatively, minimize n given N, k).

Theorem (Kashin (1977); Candès, Romberg, Tao (2006))

Suppose $n \leq N/2$. Choose entries of Φ as independent $\pm n^{-1/2}$ Bernouilli random variables. With positive probability, Φ will satisfy RIP of order k, for all $k \leq \frac{cn}{\log(N/n)}$.

Theorem (Nelson and Temlyakov, 2010)

For all RIP matrices Φ, $k = O \left(\frac{n}{\log(N/n)} \right)$.

Explicit RIP matrices
Coherence

Definition

The coherence μ of unit vectors $u_1, \ldots, u_N \in \mathbb{C}^n$ is

$$\mu := \max_{r \neq s} |\langle u_r, u_s \rangle|.$$
The coherence μ of unit vectors $u_1, \ldots, u_N \in \mathbb{C}^n$ is

$$\mu := \max_{r \neq s} |\langle u_r, u_s \rangle|.$$

Sets of vectors with small coherence are spherical codes.
Coherence

Definition

The **coherence** μ of unit vectors $u_1, \ldots, u_N \in \mathbb{C}^n$ is

$$\mu := \max_{r \neq s} |\langle u_r, u_s \rangle|.$$

Sets of vectors with small coherence are **spherical codes**

Proposition

Suppose that u_1, \ldots, u_N are the columns of Φ with coherence μ. For all k, Φ satisfies RIP of order k with constant $\delta = k\mu$.

Cor: Φ satisfies RIP of order $k = \lceil 1/(3\mu) \rceil$ and $\delta = \frac{1}{3}$.

Proof: For a k-sparse vector x,

$$||\Phi x||^2_2 - ||x||^2_2 = \sum_{r,s} |x_r x_s \langle u_r, u_s \rangle| \leq \mu \left(\sum |x_r| \right)^2 \leq k\mu ||x||^2_2.$$
Many explicit constructions of vectors u_1, \ldots, u_N satisfying

$$\mu = O\left(\frac{\log N}{\sqrt{n \log n}}\right),$$

Explicit constructions of RIP matrices

Many explicit contructions of vectors $\mathbf{u}_1, \ldots, \mathbf{u}_N$ satisfying

$$
\mu = O\left(\frac{\log N}{\sqrt{n \log n}}\right),
$$

Corollary: Φ with columns \mathbf{u}_j satisfies RIP with $\delta = \frac{1}{3}$ and all

$$
k \leq \frac{c \sqrt{n \log n}}{\log N}.
$$
Explicit constructions of RIP matrices

Many explicit constructions of vectors u_1, \ldots, u_N satisfying

$$\mu = O \left(\frac{\log N}{\sqrt{n \log n}} \right),$$

Corollary: Φ with columns u_j satisfies RIP with $\delta = \frac{1}{3}$ and all $k \leq \frac{c \sqrt{n \log n}}{\log N}$.

Limitation: (Levenshtein, 1983) For all u_1, \ldots, u_N,

$$\mu \geq c \left(\frac{\log N}{n \log (n/ \log N)} \right)^{1/2} \geq \frac{c}{\sqrt{n}},$$

With coherence, we cannot deduce RIP of order larger than $\sqrt{n}.$
Theorem (BDFKK, 2010)

For an effective constant $\alpha > 0$, large n and $N^{1-\alpha} \leq n \leq N$, we give an explicit $n \times N$ RIP matrix of order $k = \lceil n^{1/2} + \alpha \rceil$ and constant $\delta = \frac{1}{3}$.
Breaking the \sqrt{n} barrier with explicit constructions

Theorem (BDFKK, 2010)

For an effective constant $\alpha > 0$, large n and $N^{1-\alpha} \leq n \leq N$, we give an explicit $n \times N$ RIP matrix of order $k = \lfloor n^{1/2} + \alpha \rfloor$ and constant $\delta = \frac{1}{3}$.

The construction: Take s a large integer, p a large prime, $\mathcal{A} = \{ 1, 2, \ldots, \lfloor p^{1/s} \rfloor \}$, $M = 2^{2s-1}$, $r = \left\lfloor \frac{\log p}{2s \log 2} \right\rfloor$, $\mathcal{B} = \left\{ \sum_{j=0}^{r-1} x_j (2M)^j : 0 \leq x_j \leq M - 1 \right\}$.

Matrix columns $u_{a,b} = p^{-1/2} \left(e^{2\pi i (ax^2 + bx)/p} \right)_{1 \leq x \leq p}$; $a \in \mathcal{A}$, $b \in \mathcal{B}$.

$N = |\mathcal{A}| \cdot |\mathcal{B}|$, $n = p$.

Bourgain, Dilworth, Ford, Konyagin, Kutzarova

Explicit RIP matrices
Some ideas of the proof

Take s a large integer, p a large prime,
$A = \{1, 2, \ldots, \lfloor p^{1/s} \rfloor \}$,

$M = 2^{2s-1}$, $r = \left\lfloor \frac{\log p}{2s \log 2} \right\rfloor$, $B = \left\{ \sum_{j=0}^{r-1} x_j (2M)^j : 0 \leq x_j \leq M - 1 \right\}$.

matrix columns $u_{a,b} = p^{-1/2} \left(e^{2\pi i (ax^2 + bx)/p} \right)_{1 \leq x \leq p}$; $a \in A$, $b \in B$.

$N = |A| \cdot |B|$, $n = p$.

(1) No “carries” when adding elements of B, thought of as base-$2M$ numbers.

(2) use Gauss sum formula to compute exactly $\langle u_{a,b}, u_{a',b'} \rangle$.

(3) results from additive combinatorics for subsets of B.

Bourgain, Dilworth, Ford, Konyagin, Kutzarova
Turán’s power sums

For unit complex numbers z_1, \ldots, z_n, let

$$M_N(z) = \max_{m=1,2,\ldots,N} \left| \sum_{j=1}^n z_j^m \right|.$$

General problem: find z to minimize $M_N(z)$.
Turán’s power sums

For unit complex numbers z_1, \ldots, z_n, let

$$M_N(z) = \max_{m=1,2,\ldots,N} \left| \sum_{j=1}^{n} z_j^m \right|.$$

General problem: find z to minimize $M_N(z)$.

Proposition

For unit complex numbers z_1, \ldots, z_n, the vectors

$$u_m = n^{-1/2}(z_1^{m-1}, \ldots, z_n^{m-1})^T, 1 \leq m \leq N,$$

have coherence

$$\mu = \frac{M_{N-1}(z)}{n}.$$
Explicit constructions for Turán’s power sums

Andersson (2008). Explicit z with $M_N(z) = O\left(n^{1/2} \frac{\log N}{\log n}\right)$.
Andersson (2008). Explicit z with $M_N(z) = O \left(n^{1/2} \frac{\log N}{\log n} \right)$.

Theorem (BDFKK, 2010)

We give explicit constructions of z such that

$$M_N(z) = O \left((\log N \log \log N)^{1/3} n^{2/3} \right).$$

Remark. Our constructions are better than Andersson’s constructions for $n \lesssim (\log N)^4$.

Corollary. Explicit constructions of vectors u_1, \ldots, u_N with

$$\mu = O \left((\log N \log \log N)^{1/3} n^{2/3} \right).$$

This matches, up to a power of $\log \log N$, the best known explicit constructions for codes when $n \lesssim (\log N)^4$.

Explicit constructions for Turán’s power sums
Andersson (2008). Explicit z with $M_N(z) = O \left(n^{1/2} \frac{\log N}{\log n} \right)$.

Theorem (BDFKK, 2010)

We give explicit constructions of z such that

$$M_N(z) = O \left((\log N \log \log N)^{1/3} n^{2/3} \right).$$

Remark. Our constructions are better than Andersson’s constructions for $n \lesssim (\log N)^4$.

Corollary. Explicit constructions of vectors u_1, \ldots, u_N with

$$\mu = O \left(\left(\frac{\log N \log \log N}{n} \right)^{1/3} \right).$$

This matches, up to a power of $\log \log N$, the best known explicit constructions for codes when $n \lesssim (\log N)^4$.
Some ideas of the proof

Based on ideas in a paper of Ajtai, Iwaniec, Komlós, Pintz and Szemeredi (1990). They were interested in constructing sets $T \subseteq \{1, \ldots, N\}$ such that all the Fourier coefficients

$$\sum_{t \in T} e^{2\pi i m t / N}, \quad 1 \leq m \leq N - 1,$$

are uniformly small, with $|T|$ taken as small as possible.

The analysis uses only very basic (undergraduate-level) number theory.