On the comparison of volumes of quantum states

Deping Ye

The Fields Institute, Toronto, ON, Canada

August 6, 2010

“Perspectives in High Dimensions”
at Case Western Reserve University, Cleveland, OH
Quantum states describe quantum systems.
Quantum states describe quantum systems.

Modern quantum algorithms, such as Shor’s algorithm for integer factorization, have entangled quantum states as their key ingredients.
Quantum states describe quantum systems.

Modern quantum algorithms, such as Shor’s algorithm for integer factorization, have entangled quantum states as their key ingredients.

To determine the separability and entanglement is a hard problem!
Quantum states describe quantum systems.

Modern quantum algorithms, such as Shor’s algorithm for integer factorization, have entangled quantum states as their key ingredients.

To determine the separability and entanglement is a hard problem!

What is the relative size of the set of separable and entangled quantum states within the set of quantum states in terms of some measure?
Complex Hilbert space $\mathcal{H} = \mathbb{C}^{D_1} \otimes \mathbb{C}^{D_2} \cdots \otimes \mathbb{C}^{D_n}$ with complex dimension $N = D_1 \cdots D_n$. Each factor of \mathcal{H} system corresponds to a subsystem of \mathcal{H}.

The set of quantum states may be identified as the set of density matrices \mathcal{D}:

$$\mathcal{D} = \{ \rho : N \times N \text{ positive definite matrix with trace 1, i.e., } \text{tr} \rho = 1 \}$$

The dimension of \mathcal{D} is $d = N^2 - 1$.

Deping Ye

On the comparison of volumes of quantum states
Complex Hilbert space $\mathcal{H} = \mathbb{C}^{D_1} \otimes \mathbb{C}^{D_2} \cdots \otimes \mathbb{C}^{D_n}$ with complex dimension $N = D_1 \cdots D_n$. Each factor of \mathcal{H} system corresponds to a subsystem of \mathcal{H}.

Density Matrix

The set of quantum states may be identified as the set of density matrices \mathcal{D}:

$$\mathcal{D} = \{ \rho : N \times N \text{ positive definite matrix with trace 1, i.e., } tr\rho = 1 \}$$
Complex Hilbert space $\mathcal{H} = \mathbb{C}^{D_1} \otimes \mathbb{C}^{D_2} \cdots \otimes \mathbb{C}^{D_n}$ with complex dimension $N = D_1 \cdots D_n$. Each factor of \mathcal{H} system corresponds to a subsystem of \mathcal{H}.

The set of quantum states may be identified as the set of density matrices \mathcal{D}:

$\mathcal{D} = \{\rho : N \times N \text{ positive definite matrix with trace 1, i.e., } \text{tr}\rho = 1\}$

The dimension of \mathcal{D} is $d = N^2 - 1$.
Separable and Entangled Quantum states

Separable quantum states

The set of separable quantum states is

$$S = \text{conv}\{\rho_1 \otimes \cdots \otimes \rho_n, \rho_i \in \mathcal{D}(\mathbb{C}^{D_i})\}.$$
Separable and Entangled Quantum states

The set of separable quantum states is

\[S = \text{conv}\{\rho_1 \otimes \cdots \otimes \rho_n, \rho_i \in D(D_i)\} \].

A quantum state is called entangled if it is not separable. That is, the set of entangled quantum states is \(E = D \setminus S \).
Separable and Entangled Quantum states

Separable quantum states

The set of separable quantum states is

$$S = \text{conv}\{\rho_1 \otimes \cdots \otimes \rho_n, \rho_i \in \mathcal{D}(\mathbb{C}^{D_i})\}.$$

A quantum state is called entangled if it is not separable. That is, the set of entangled quantum states is $$\mathcal{E} = \mathcal{D} \setminus S.$$

What is the probability of $$S$$ and $$\mathcal{E}$$ in $$\mathcal{D}$$?
Peres-Horodecki Positive Partial Transpose Criterion

Let $\mathcal{H} = \mathbb{C}^{D_1} \otimes \mathbb{C}^{D_2}$.
Peres-Horodecki Positive Partial Transpose Criterion

Let $\mathcal{H} = \mathbb{C}^{D_1} \otimes \mathbb{C}^{D_2}$.

Partial Transpose T_1: $T_1(\rho_1 \otimes \rho_2) = \rho_1^T \otimes \rho_2$
Let $\mathcal{H} = \mathbb{C}^{D_1} \otimes \mathbb{C}^{D_2}$.

Partial Transpose T_1: $T_1(\rho_1 \otimes \rho_2) = \rho_1^T \otimes \rho_2$

Peres-Horodecki PPT Criterion

Let $\mathcal{PPT} = \{\rho \in \mathcal{D}(\mathcal{H}) : \text{s.t. } T_1(\rho) \geq 0\}$. Then

$$S \subset \mathcal{PPT} \subset \mathcal{D}.$$

That is, a separable state must satisfy positive partial transpose criterion. Equivalently, a non-PPT state must be entangled.
Peres-Horodecki Positive Partial Transpose Criterion

Let $\mathcal{H} = \mathbb{C}^{D_1} \otimes \mathbb{C}^{D_2}$.

Partial Transpose T_1: $T_1(\rho_1 \otimes \rho_2) = \rho_1^T \otimes \rho_2$

Peres-Horodecki PPT Criterion

Let $\mathcal{PPT} = \{\rho \in \mathcal{D}(\mathcal{H}) : \text{s.t. } T_1(\rho) \geq 0\}$. Then

$$S \subset \mathcal{PPT} \subset \mathcal{D}.$$

That is, a separable state must satisfy positive partial transpose criterion. Equivalently, a non-PPT state must be entangled.

If $\mathcal{H} = \mathbb{C}^2 \otimes \mathbb{C}^2$ or $\mathcal{H} = \mathbb{C}^2 \otimes \mathbb{C}^3$, then $S = \mathcal{PPT}$.

Deping Ye

On the comparison of volumes of quantum states
Let $\mathcal{H} = \mathbb{C}^{D_1} \otimes \mathbb{C}^{D_2}$.

Partial Transpose T_1: $T_1(\rho_1 \otimes \rho_2) = \rho_1^T \otimes \rho_2$

Peres-Horodecki PPT Criterion

Let $\mathcal{PPT} = \{\rho \in \mathcal{D}(\mathcal{H}) : \text{s.t. } T_1(\rho) \geq 0\}$. Then

$$S \subset \mathcal{PPT} \subset \mathcal{D}.$$

That is, a separable state must satisfy positive partial transpose criterion. Equivalently, a non-PPT state must be entangled.

If $\mathcal{H} = \mathbb{C}^2 \otimes \mathbb{C}^2$ or $\mathcal{H} = \mathbb{C}^2 \otimes \mathbb{C}^3$, then $S = \mathcal{PPT}$.

How precise is the Peres-Horodecki PPT criterion (as a tool to detect the separability)?
Measures dV on D in literature have common features, such as,

\[dV = d\nu \times d\gamma, \]

where $d\nu$ is some measure on the chamber of the simplex (of eigenvalues)
\[\{ (\lambda_1, \cdots, \lambda_N) : \sum_i \lambda_i = 1, \lambda_i \geq 0 \} \]
with order $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$, and $d\gamma$ is the measure on the flag manifold (of eigenvectors)
\[\mathbb{F}_N = U(N)/[U(1)] \]
\[d\gamma = 1 \cdots \prod_{i < j} 2 \text{Re}(U_{ij} dU_{ij}) \text{Im}(U_{ij} dU_{ij}) \]
where dU is the variation of unitary matrix U such that $U + dU$ is also an unitary matrix.
Measures dV on \mathcal{D} in literature have common features, such as,

$$dV = d\nu \times d\gamma,$$

where $d\nu$ is some measure on Δ_1: the chamber of the simplex (of eigenvalues)

$$\{ (\lambda_1, \cdots, \lambda_N) : \sum_i \lambda_i = 1, \lambda_i \geq 0 \}$$

with order $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$, and $d\gamma$ is the measure on the flag manifold (of eigenvectors)

$$F_N = U(N)/[U(1)]^N$$

$$d\gamma = \prod_{i<j} 2 \text{Re}(U^{-1}dU)_{ij} \text{Im}(U^{-1}dU)_{ij}$$

where dU is the variation of unitary matrix U such that $U + dU$ is also an unitary matrix.
Measures dV on \mathcal{D} in literature have common features, such as, $dV = d\nu \times d\gamma$, where $d\nu$ is some measure on Δ_1: the chamber of the simplex (of eigenvalues) $\{(\lambda_1, \cdots, \lambda_N): \sum_i \lambda_i = 1, \lambda_i \geq 0\}$ with order $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$, and $d\gamma$ is the measure on the flag manifold $F_N = U(N)/[U(1)]_N$: $d\gamma = 1 \cdots N \prod_{i < j} 2\Re(U_i - 1)dU_{ij} \Im(U_i - 1)dU_{ij}$, where dU is the variation of unitary matrix U such that $U + dU$ is also an unitary matrix.
Measures dV on \mathcal{D} in literature have common features, such as,
\[dV = d\nu \times d\gamma, \]
where $d\nu$ is some measure on Δ_1: the chamber of the simplex (of eigenvalues) \(\{ (\lambda_1, \cdots, \lambda_N) : \sum_i \lambda_i = 1, \lambda_i \geq 0 \} \) with order \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N \), and $d\gamma$ is the measure on the flag manifold (of eigenvectors) \(\mathcal{F}^N = \mathcal{U}(N)/[\mathcal{U}(1)]^N \):
\[d\gamma = \prod_{i<j}^{1 \cdots N} 2\text{Re}(U^{-1}dU)_{ij} \text{Im}(U^{-1}dU)_{ij} \]
where dU is the variation of unitary matrix U such that $U + dU$ is also an unitary matrix.
The Hilbert-Schmidt measure:

\[dV_{HS} = \sqrt{N} \prod_{i<j}^{1\cdots N} (\lambda_i - \lambda_j)^2 \delta_0(\sum_i \lambda_i - 1) \prod_{i=1}^{N} d\lambda_i \, d\gamma; \]
- The Hilbert-Schmidt measure:

\[dV_{HS} = \sqrt{N} \prod_{i<j} (\lambda_i - \lambda_j)^2 \delta_0(\sum \lambda_i - 1) \prod_{i=1}^{N} d\lambda_i \; d\gamma; \]

- Bures measure:

\[dV_B = \frac{2^{\frac{2-N-N^2}{2}}}{\sqrt{\lambda_1 \cdots \lambda_N}} \prod_{i<j} \frac{(\lambda_i - \lambda_j)^2}{\lambda_i + \lambda_j} \delta_0(\sum \lambda_i - 1) \prod_{i=1}^{N} d\lambda_i \; d\gamma; \]
The Hilbert-Schmidt measure:

\[
dV_{HS} = \sqrt{N} \prod_{i<j} (\lambda_i - \lambda_j)^2 \delta_0(\sum \lambda_i - 1) \prod_{i=1}^N d\lambda_i d\gamma;
\]

Bures measure:

\[
dV_B = 2^{\frac{2-N-N^2}{2}} \sqrt{\frac{\lambda_1 \cdots \lambda_N}{\lambda_1 + \lambda_N}} \prod_{i<j} (\lambda_i - \lambda_j)^2 \delta_0(\sum \lambda_i - 1) \prod_{i=1}^N d\lambda_i d\gamma;
\]

Induced measure by partial trace on \(\mathcal{H}_N \otimes \mathcal{H}_K \) \((K \geq N)\):

\[
dV_{N,K} = \prod_{i=1}^N \lambda_i^{K-N} \prod_{i<j} (\lambda_i - \lambda_j)^2 \delta_0(\sum \lambda_i - 1) \prod_{i=1}^N d\lambda_i d\gamma;
\]
The Hilbert-Schmidt measure:
\[
dV_{HS} = \sqrt{N} \prod_{i<j} (\lambda_i - \lambda_j)^2 \delta_0(\sum_i \lambda_i - 1) \prod_{i=1}^{N} d\lambda_i \, d\gamma;
\]

Bures measure:
\[
dV_B = \frac{2^{2-N-N^2}}{\sqrt{\lambda_1 \cdots \lambda_N}} \prod_{i<j} \frac{(\lambda_i - \lambda_j)^2}{\lambda_i + \lambda_j} \delta_0(\sum_i \lambda_i - 1) \prod_{i=1}^{N} d\lambda_i \, d\gamma;
\]

Induced measure by partial trace on \(\mathcal{H}_N \otimes \mathcal{H}_K \) \((K \geq N) \):
\[
dV_{N,K} = \prod_{i=1}^{N} \lambda_i^{K-N} \prod_{i<j} (\lambda_i - \lambda_j)^2 \delta_0(\sum_i \lambda_i - 1) \prod_{i=1}^{N} d\lambda_i \, d\gamma;
\]

the \(\alpha \)-volume \((\alpha > 0) \):
\[
dV_{\alpha} = \prod_{i=1}^{N} \lambda_i^{\alpha-1} \prod_{i<j} (\lambda_i - \lambda_j)^2 \delta_0(\sum_i \lambda_i - 1) \prod_{i=1}^{N} d\lambda_i \, d\gamma.
\]
Measure induced by Metric on \(\mathcal{D} \)

\(dV_{HS} \) is induced by Hilbert-Schmidt distance

\[
d_{HS}(\rho, \sigma) = \|\rho - \sigma\|_2 = \sqrt{tr(\rho - \sigma)^\dagger(\rho - \sigma)}.
\]
Measure induced by Metric on \mathcal{D}

dV_{HS} is induced by Hilbert-Schmidt distance

$$d_{HS}(\rho, \sigma) = \|\rho - \sigma\|_2 = \sqrt{\text{tr}(\rho - \sigma)^\dagger (\rho - \sigma)}.$$

dV_B is induced by Bures distance

$$d_B(\rho, \sigma) = \sup_{\{E_i\}} \left(\sum_i \left[\sqrt{\text{tr}(E_i \rho)} - \sqrt{\text{tr}(E_i \sigma)} \right]^2 \right)^{\frac{1}{2}}$$

where the supremum runs over all the POVM (positive operator valued measurement) $\{E_i\}$, that is, for some $1 \leq k \leq N$,

$$\sum_{i=1}^k E_i = \text{Id}_N, \text{ and } E_i = E_i^\dagger, E_i \geq 0, \ i = 1, \cdots, k.$$
Let $K \geq N$, and ρ be a density matrix on $\mathcal{H}_N \otimes \mathcal{H}_K$, then

$$\rho = \begin{pmatrix}
A_{11} & \cdots & A_{1N} \\
\vdots & \ddots & \vdots \\
A_{N1} & \cdots & A_{NN}
\end{pmatrix}.$$

Define the partial trace over \mathcal{H}_K as

$$\rho^A = Tr_B(\rho), \text{ where } (\rho^A)_{ij} = tr(A_{ij}) \text{ for } i, j = 1, \cdots, N.$$
Let $K \geq N$, and ρ be a density matrix on $\mathcal{H}_N \otimes \mathcal{H}_K$, then

$$\rho = \begin{pmatrix} A_{11} & \cdots & A_{1N} \\ \vdots & \ddots & \vdots \\ A_{N1} & \cdots & A_{NN} \end{pmatrix}.$$

Define the partial trace over \mathcal{H}_K as

$$\rho^A = Tr_B(\rho), \text{ where } (\rho^A)_{ij} = tr(A_{ij}) \text{ for } i, j = 1, \cdots, N.$$

The partial trace process allows us to view states on \mathcal{H}_N as a (pure) state on (much higher) dimensional space $\mathcal{H}_N \otimes \mathcal{H}_K$. Then the measures induced by partial trace may be considered as a projection of the $(NK - 1)$ dimensional simplex of eigenvalues into simplex of $(N - 1)$ dimension.
Comparison of α-volume with Hilbert-Schmidt volume

Let \mathcal{K} be a measurable subset of \mathcal{D} (on \mathcal{H}_N), and $d = N^2 - 1$.

Let $\alpha > 0$ be a (fixed) constant, $\alpha_{\text{max}} = \max\{1, \alpha\}$, and $\alpha_{\text{min}} = \min\{1, \alpha\}$. There exist universal constants $c_1, C_1 > 0$, s.t.,

$$c_1 \frac{\text{VR}_{\text{HS}}(\mathcal{K}, \mathcal{D})}{\alpha_{\text{max}} \exp\left((1 - \alpha_{\text{max}}) \ln \ln\left(e/\xi\right) N^2 - 1\right)} \leq \frac{\text{VR}_{\alpha}(\mathcal{K}, \mathcal{D})}{\alpha_{\text{min}} \exp\left((1 - \alpha_{\text{min}}) \ln \ln\left(e/\xi\right) N^2 - 1\right)} \leq C_1 \frac{\text{VR}_{\text{HS}}(\mathcal{K}, \mathcal{D})}{\alpha_{\text{min}}}.$$
Comparison of α-volume with Hilbert-Schmidt volume

Let \mathcal{K} be a measurable subset of \mathcal{D} (on \mathcal{H}_N), and $d = N^2 - 1$. The α-volume radii ratio of \mathcal{K} to \mathcal{D} is

$$VR_{\alpha}(\mathcal{K}, \mathcal{D}) = \left(\frac{V_{\alpha}(\mathcal{K})}{V_{\alpha}(\mathcal{D})} \right)^{1/d}$$

and the Hilbert-Schmidt volume radii ratio of \mathcal{K} to \mathcal{D} is

$$\xi = VR_{HS}(\mathcal{K}, \mathcal{D}) = VR_1(\mathcal{K}, \mathcal{D}).$$
Comparison of α-volume with Hilbert-Schmidt volume

Let \mathcal{K} be a measurable subset of \mathcal{D} (on \mathcal{H}_N), and $d = N^2 - 1$. The α-volume radii ratio of \mathcal{K} to \mathcal{D} is

$$VR_\alpha(\mathcal{K}, \mathcal{D}) = \left(\frac{V_\alpha(\mathcal{K})}{V_\alpha(\mathcal{D})}\right)^{1/d}$$

and the Hilbert-Schmidt volume radii ratio of \mathcal{K} to \mathcal{D} is $\xi = VR_{HS}(\mathcal{K}, \mathcal{D}) = VR_1(\mathcal{K}, \mathcal{D})$.

Let $\alpha > 0$ be a (fixed) constant, $\alpha_{\text{max}} = \max\{1, \alpha\}$, and $\alpha_{\text{min}} = \min\{1, \alpha\}$. There exist universal constants $c_1, C_1 > 0$, s.t.,

$$c_1 VR_{HS}(\mathcal{K}, \mathcal{D})^{\alpha_{\text{max}}} \exp\left(\frac{(1 - \alpha_{\text{max}}) \ln \ln(e/\xi)}{N^2 - 1}\right) \leq VR_\alpha(\mathcal{K}, \mathcal{D})$$

$$\leq C_1 VR_{HS}(\mathcal{K}, \mathcal{D})^{\alpha_{\text{min}}} \exp\left(\frac{(1 - \alpha_{\text{min}}) \ln \ln(e/\xi)}{N^2 - 1}\right).$$
Comparison of α-volume with Bures volume

Let $\zeta = \text{VR}_\alpha(\mathcal{K}, \mathcal{D})$, and the Bures volume radii ratio of \mathcal{K} to \mathcal{D} be

$$\text{VR}_B(\mathcal{K}, \mathcal{D}) = \left(\frac{V_B(\mathcal{K})}{V_B(\mathcal{D})} \right)^{1/d}.$$
Comparison of α-volume with Bures volume

Let $\zeta = \text{VR}_\alpha(\mathcal{K}, \mathcal{D})$, and the Bures volume radii ratio of \mathcal{K} to \mathcal{D} be

$$\text{VR}_B(\mathcal{K}, \mathcal{D}) = \left(\frac{V_B(\mathcal{K})}{V_B(\mathcal{D})}\right)^{1/d}.$$

There exist universal constants $c_2, C_2 > 0$, such that

$$c_2 \min\{1, \frac{1}{2\alpha}\} \exp \left(\frac{(1 - \max\{1, \frac{1}{2\alpha}\}) \ln \ln(\frac{e}{\zeta})}{N^2 - 1}\right) \leq \text{VR}_B(\mathcal{K}, \mathcal{D}) \leq C_2 \min\{\frac{1}{2}, \frac{1}{2\alpha}\} \exp \left(\frac{\ln \ln(\frac{e}{\zeta})}{2N}\right).$$

- $\alpha = 1$: D. Ye, (Journal of Mathematical Physics (JMP), 2009).
Large number of small subsystems

Let $\mathcal{H} = (\mathbb{C}^D)^\otimes n$ with (small) D, and $\alpha_D = \frac{\log_D(1+\frac{1}{D})}{2} - \frac{\log_D(D+1)}{2D^2}$.
Large number of small subsystems

Let \(\mathcal{H} = (\mathbb{C}^D)^\otimes n \) with (small) \(D \), and \(\alpha_D = \frac{\log_D(1+\frac{1}{D})}{2} - \frac{\log_D(D+1)}{2D^2} \).

There exist universal constants \(c_3, c_3', C_3, C_3' > 0 \), s.t., for \(\alpha > 0 \),

\[
\frac{c_3}{N^{1/2+\alpha_D}} \leq VR_B(S, D) \leq \frac{c_3}{N^{1/2+\alpha_D}} \sqrt{\frac{(Dn \ln n)^{1/2}}{N^{1/2+\alpha_D} \max\{1, \alpha\}}} \leq VR_\alpha(S, D) \leq \frac{c_3'}{N^{1/2+\alpha_D}} \min\{1, \alpha\} \left(\frac{(Dn \ln n)^{1/2}}{N^{1/2+\alpha_D}} \right)^{\min\{1, \alpha\}}.
\]

G. Aubrun and S. J. Szarek proved:

\[
\tilde{c}_3 \frac{N^{1/2+\alpha_D}}{N^{1/2+\alpha_D}} \leq VR_HS(S, D) \leq \tilde{c}_3 \frac{(Dn \ln n)^{1/2}}{N^{1/2+\alpha_D}}.
\]
Small number of large subsystems

Let $\mathcal{H} = (\mathbb{C}^D)^n$ with (small) n.

There exist universal constants $c_4, c'_4, C_4, C'_4 > 0$, s.t., for $\alpha > 0$,

$$\frac{c_4^n}{N^{1/2-1/(2n)}} \leq \text{VR}_B(S, D) \leq C_4 \sqrt{\frac{(n \ln n)^{1/2}}{N^{1/2-1/(2n)}}}.$$

$$\left(\frac{c'_4^n}{N^{1/2-1/(2n)}}\right)^{\max\{1, \alpha\}} \leq \text{VR}_{\alpha}(S, D) \leq C'_4 \left(\frac{(n \ln n)^{1/2}}{N^{1/2-1/(2n)}}\right)^{\min\{1, \alpha\}}.$$

G. Aubrun and S. J. Szarek proved:

$$\frac{\tilde{c}_4^n}{N^{1/2-1/(2n)}} \leq \text{VR}_{HS}(S, D) \leq \tilde{C}_4 \frac{(n \ln n)^{1/2}}{N^{1/2-1/(2n)}}.$$
There exist absolute constants $c_0, c'_0 > 0$ such that for any bipartite system $\mathcal{H} = \mathbb{C}^D \otimes \mathbb{C}^D$,

$$c_0 \leq \text{VR}_B(\text{PPT}, \mathcal{D}) \leq 1;$$
$$c'_0 \leq \text{VR}_\alpha(\text{PPT}, \mathcal{D}) \leq 1.$$

G. Aubrun and S. J. Szarek proved: $\tilde{c}_0 \leq \text{VR}_{HS}(\text{PPT}, \mathcal{D}) \leq 1$.

Peres-Horodecki PPT becoming imprecise as a tool to detect separability for large N

There exist absolute constants $c_0, c'_0 > 0$ such that for any bipartite system $\mathcal{H} = \mathbb{C}^D \otimes \mathbb{C}^D$,

$$c_0 \leq \text{VR}_B(\text{PPT}, \mathcal{D}) \leq 1;$$
$$c'_0 \leq \text{VR}_\alpha(\text{PPT}, \mathcal{D}) \leq 1.$$

G. Aubrun and S. J. Szarek proved: $\tilde{c}_0 \leq \text{VR}_{HS}(\text{PPT}, \mathcal{D}) \leq 1$.

Conclusion: $\text{VR}_B(S, \text{PPT})$ and $\text{VR}_\alpha(S, \text{PPT})$ go to 0, hence, the Peres-Horodecki PPT criterion is not precise as a tool to detect separability for large N.
Let $\mathcal{H} = (\mathbb{C}^D)^{\otimes n}$. The α-probability of S in \mathcal{D} is defined as

$$\mathbb{P}_\alpha(S, n, D) =: \frac{V_\alpha(S)}{V_\alpha(\mathcal{D})}.$$

\begin{align*}
\mathbb{P}_2(S, 8, 2) &\leq 2.1 \times 10^{-1595}, & \mathbb{P}_2(S, 5, 3) &\leq 1.52 \times 10^{-5301}, \\
\mathbb{P}_{0.5}(S, 8, 2) &\leq 8.8 \times 10^{-479}, & \mathbb{P}_{0.5}(S, 5, 3) &\leq 9.5 \times 10^{-2351}.
\end{align*}

The conditional α-probability of S given PPT is

$$\mathbb{P}_\alpha(S|\text{PPT}, n, D) =: \frac{V_\alpha(S)}{V_\alpha(\text{PPT})}.$$

\begin{align*}
\mathbb{P}_{1.1}(S|\text{PPT}, 12, 2) &\leq 2.5 \times 10^{-2721940}, & \mathbb{P}_{1.1}(S|\text{PPT}, 8, 3) &\leq 1.82 \times 10^{-12248770}.
\end{align*}

Thank you!