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One of the oldest topics in the calculus of variations is the study of the elastic rod
which, according to Daniel Bernoulli's idealization, minimizes total squared
curvature among curves of the same length and first order boundary data. The
classical term elastica refers to a curve in the plane or IR3 which represents such a rod
in equilibrium.

While the elastica and its generalizations have long been (and continue to be) of
interest in the context of elasticity theory, the elastica as a purely geometrical entity
seems to have been largely ignored.

Recently, however, Bryant and Griffiths [1, 3] have found the elastica and its
natural generalization to space forms (where arc length is generally not constrained)
to be an interesting example in the context of the general theory of exterior
differential systems. Independently, the present authors have studied 'free' elastic
curves in space forms and have drawn connections to well-known problems in
differential geometry [4, 5].

From the geometric point of view, the closed elasticae and their global behaviour
are naturally of particular interest. In the present paper we maintain this emphasis
but return to the classical setting of Euclidean curves with fixed arc length.
Specifically, we give a complete classification of closed elastic curves in U" and
determine the knottedness of these elasticae. We note that the integrability of the
equations for a classical elastica was known already to Euler in the planar case and
(essentially) to Radon in the case of IR3 (see Blaschke's Vorlesungen iiber
Differentialgeometrie I); to determine the closed elasticae, however, the chief problem
is to understand the dependence of the resulting elliptic integrals on certain
parameters.

Since the closed planar elasticae were well described already by Euler, and since
uniqueness of solutions in the initial-value problem implies that any elastica in U"
must in fact lie in U3, it will suffice to present the following.

MAIN THEOREM. There exists a countably infinite family of (similarity classes of)
closed non-planar elastic curves in U2. All such elasticae are embedded and lie on
embedded tori of revolution. Infinitely many of these are knotted and the knot types
which thus occur are precisely the (m, n)-torus knots satisfying m > 2n. The integers
m, n determine the elasticae uniquely (up to similarity).

The reader may find it surprising that closed non-planar elasticae exist at all.
Before presenting a proof of this fact, we explain heuristically why such elasticae
should occur.
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Let C(p) be the p-fold circle

x{s) = - cos {ps), y{s) = - sin {ps), 0 ^ s ^ 2n ,
P P

and let C{-q) be the g-fold circle of opposite orientation

x{s) = - cos {-qs), y{s) = - sin ( - qs).
q q

Considered as curves in U3, C{p) and C{ — q) are G-equivariantly regularly
homotopic, where G is the group generated by rotation about the z-axis by an angle
(2np/{p + q)). Furthermore, C{p) and C{ — q) locally minimize total squared
curvature among G-symmetric curves of length 2n (as can be seen by second
variation computations similar to those in [4]).

By a mountain-pass argument and the principle of symmetric criticality one may
therefore expect a third critical point having the same symmetry. Since the only
closed planar elasticae are /c-fold circles and /c-fold figure-eight curves (which possess
a Z2 symmetry), the above third critical point will be non-planar except in the case
when p = q (where the p-covered figure eight is obtained).

We begin the proof by reviewing basic facts about elasticae in space forms; these
are discussed in greater detail in [4]. In what follows G denotes the (constant)
sectional curvature of the 3-manifold M.

The curvature k and torsion T of an elastica y in M satisfy the Euler equations

(1) 0 = 2kss + k3-Ak-2kx2 + 2kG, k2x = c = constant.

Here k is an undetermined constant which arises as a Lagrange multiplier.
The solutions to (1) are given in terms of three parameters a ,p and w and the

Jacobi elliptic functions sn{x, p). Here a represents the maximum squared curvature,
while p, w, with 0 < p ^ w ^ 1, control the shape of the curve (this is elaborated
upon in Figure 1). Note that the parameter w is equal to p/q [4].

The non-constant solutions of (1) are given by

O) k2 — u(^) —

(1\ o i AT a /"> 2 2 i \ A •> <* /.. , w i ,
\J) LA. — 4 l j = —r- yJW —p — 1J , 4c = (1 W )(w D )

w ' w4

F r o m these equat ions one can see, for example, that a planar elastica (where
c = 0) must satisfy either w = 1 or w = p . The first case yields curves with non-
vanishing curvature ('orbitlike' elasticae) while the second yields curves whose
curvature has alternating sign ('wavelike' elasticae). The condit ion that p = 0 gives
rise to curves with constant curvature and torsion (helices). In all other cases T is
non-vanishing and non-constant .

Integration of (1) gives rise to the useful equat ion

(4) (fcj2 + ifc + G - - / c 2 + 7 T = constant = — + G - - a H .
s V 2 / /c2 4 I 2 a
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The following proposition is the key to integrating the Frenet equations for y.

PROPOSITION 1. A vector field J along a curve y in M extends to a Killing field on
M (more precisely, on the universal cover of M) if and only if J satisfies

0 = <VrJ, T>, 0 =

/ k k
0 = ( ( V ) 3 J ^ ( V ) V (G / 2 ) V J

where the vectors T,N,B form the Frenet frame for y, and (Vr)' denotes the i-th
covariant derivative with respect to T.

We say that a vector field which satisfies (5) is Killing along y. As observed in [4],
if y is an elastica, the vector field Jo = [k2 — X)T+ 2ksN + 2kxB is always Killing
along y. We observe now that (1) and (5) imply that kB is also Killing along y.

In the present case the Killing fields Jo and kB are naturally related to a system
of cylindrical coordinates (r, 9, z). For one thing, (4) implies that Jo has constant
magnitude \J0\ = (a — A)2 + 4c2/a. Such a Killing field in U3 is obviously a
translation (that is, a constant) field. Normalizing, we obtain one coordinate field
d/dz = JJ\JO\.

Now kB has non-constant magnitude (unless y is a line, a circle or a helix) while
its dot product with Jo is a constant, that is, kBJ0 = 2c. It follows that
J j = J0 — (\/2c)\J0\

2kB is a rotation field perpendicular to Jo. Thus, for some
normalization factor Q, the second coordinate field is given by d/dd = QJ{. Finally,
d/dr is given in terms of a cross product

d _ JoxB

dr ~ \J0 x B\

(the correct sign for d/dr is not obvious, but follows from computations similar to
those given below).

PROPOSITION 2. Let (r, 6, z) be cylindrical coordinates whose coordinate fields are
d/dr, d/dO, d/dz given above, and let (r(s), 0(s), z(s)) = y(s). Then

u-X a / p2 .
* sn (s p

rs = 77TTT TTKTTT. zs = T T T = 7TT * ~ ~2 sn\J0\ |J0|V w 2 ^ " 7 |J0|
and

c\J0\{u-X) =_C_\. / 4 C 2 - A | J 0 | 2

Us \J0\
2u-4c2 |J0|L V «(«-^)2

where &1 = |J0 |2p2/(a-A)2w2.

Proof Writing T = rs— +6S— +zs— and taking dot products with the
or do dz

above formulas for d/dr, d/dz, one can easily obtain rs, zs.
To get 9S one must first determine the normalization factor Q. This can be done

by choosing Q such that QJ\ has the proper length at maxima of k(s), that is, at
maxima of r(s); in fact, the length of d/dd at such a point y(s0) is the reciprocal of the
curvature kc of the circle r = r(so),>z = z(s0).
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Now kc can be computed as follows. At maxima of k the unit tangent vector T
TJo <*-* , • 7r

has vertical component ——— = -—-, and hence horizontal component

Thus

k, = 2c dd 2c

Since TflJjl) = 0, /cs = 0 and \Jt\ = s/a{a-k)/2c\J0\ at such points, one easily
computes

| V J i l \J0\
2 l^ol3

k =

concluding that Q = 4c/|J0|3.

2y/a(a-k)

Straightforward substitution into T • -^- now gives the desired expression
del \eo

for 0s (the final expression is not the simplest, but it is the most convenient for
integration).

By virtue of Proposition 2 we can already assemble the following partial
description of y (we neglect the special case when k = constant). The entire elastica y
lies between two concentric cylinders (the inner cylinder possibly degenerating to a
line). The critical points and periodicity of k(s) and r(s) coincide, the two functions
passing in one period from a minimum (on the inner cylinder) to a maximum (on the
outer cylinder) and back to a minimum, with no other critical points. Meanwhile, the
critical points of z(s) and 6(s) coincide, each having zero, one, or two critical points
in each period of k(s); also, z(s), 6(s) themselves differ from periodic functions by
linear functions. Finally, we note that we have already computed the radius of the
outer cylinder Rc = i/kc = 2x/a(a — X)/\J0\

2 and can get the radius of the inner
cylinder by integrating rs and subtracting from Rc:

(6) -2U/2

Now let Az and A0 denote the net changes in z(s), 9(s), respectively, through one
period of k. Then y closes up if and only if Az = 0 and A0 is rationally related to 2n.

Our goal now is to investigate these two conditions, beginning with the much
simpler Az = 0. In our computations of Az, A0, we shall be using the standard
notation K, E, Ao to denote the complete elliptic integrals of the first and second
kinds and the Heuman lambda function, respectively (we refer the reader to [2] for
computational facts about elliptic functions).

Since k(s) has period 2K/r and since k is even about s = K/r we have

K/r K

Az = 2 ' " " J" " ' ' '- 1X - P
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Using (3) one obtains that (a —A) = (a/2w2)(l+p2 — w2), and so- the condition
that Az = 0 is the transcendental equation

(7)
E

For elasticae satisfying (7) we can enhance the description. First, comparison of
(6) and (7) shows that rc > 0 (unless y is planar). Secondly, z(s) is also periodic in this
case, so the fact that z(s) and r(s) have only two critical points in each period implies
that y is embedded and lies on an embedded torus of revolution.

To determine the nature of the set of closed elasticae it remains only to
investigate the behaviour of A0 for those elasticae satisfying (7). For this, as well as
for understanding the set of all elasticae, it is helpful to fix the maximum curvature
y/a and consider the (p2, w2)-parameter space of (similarity classes of) elasticae
pictured in Figure 1.

circle orbitlike elasticae

w

borderline elastica

figure eight

straight line
FIG. 1

In Figure 1 the planar elasticae are represented by the points on two sides of the
triangle, helices on the third side, and the other non-planar elasticae by points in the
interior. The line rc = 0 represents the non-planar elasticae which pass through the
z-axis, and the curve Az = 0 represents the set of solutions of (7). The upper right-
hand corner w = p = 1, labelled 'borderline elastica' represents the special (planar)
elastica having curvature k = y/cc sech (rs).

To study the behaviour of A0 on this triangle we now express A0 as a function of
the parameters p2, w2. Unfortunately, this will lead to increasingly complicated
expressions in p2, w2; thus, for the sake of economy, we shall refer to the following
substitutions:

u =
(8)

2VXZ
wY
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PROPOSITION 3.

2p2\. ± B X \l-w2-p
sin Q = — = —

^ U UU U wY2

In the formula for Ad the + sign agrees with the sign of 1 — w2 — p2; so + holds
below the line rc = 0, while — holds above rc = 0 (and on rc = 0 the value of A0 is
only defined mod 2n).

Proof. The derivation of the above formula for A0 is tedious but can be
organized as follows. One begins by collecting some expressions familiar from above:

cc 2w 2w a w

Substitutions and simplifications lead to

B2 _ 1-/QI2P2 P2Z2
 2 _ X 2 ( l - w 2 - p 2 ) 2 _

P (a-A)2w2 " w 2 7 4 ' w2Y4

Using these formulas one eventually obtains

(10) 4c2-X\J0\
2 =

pVX

The above formulas for B2 = 1-jS2 and A2 = jS2-p2 imply that p2 ^ J52 ^ 1,
so formula 412.01 of [2] gives

K

dx „ nj8[l-Ao(0,p)]
= A. +l-P2sn2x 2AB

o
with 0 as in (9). .

With x = rs = — s, integration of 0S and simplification of the K coefficient
leads to 2vv

K/r

A9 = 2

o

Va |JOI a(a-A

Finally, (10) yields a remarkable cancellation and the desired formula.
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It is now a simple matter to read off the behaviour of A0 on the boundary of the
parameter triangle. On the left and upper boundaries sin 0 = 1 so that Ao = 1, and
on the diagonal boundary sin (f> = 0, so that Ao = 0. The formula for Ad now gives
the values indicated in Figure 2.

A0 =

w

FIG. 2

Note that A0 jumps by 2TT at the line rc = 0 where elasticae cross through the
z-axis, and by n at the borderline elastica. Otherwise Ad is continuous. Most
significant for our present purpose is the fact that, along the curve Az = 0, AO
varies continuously from 0 to — n and hence achieves all intermediate values (the
value of lim A9 -* 0 is only suggested by Figure 2, but is easily obtained from

p -* 0, Ar = 0

(9) once one observes that along the curve Az = 0 the quantity V2 behaves like p4

for p close to 0).
This proves the existence of all the closed elasticae described in the main theorem.

To show that there are no others requires that we establish monotonicity of A9 along
the curve Az = 0. We accomplish this by proving that

op \ow } dp

for w(p) defined by (7).
The computations are quite formidable, but suitable strategy (as outlined in the

appendix) leads to massive cancellations and ultimately produces relatively simple
partial derivative formulas:

2wV

Along the curve Az = 0, that is, for w(p) defined by (7), the bracketed terms
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above can be rewritten

2 -p2)(3p2- l -3w2)K]

But {E-K) < 0, (E-(l-p2)K) > 0 and (2E-(2-p2)K) < 0 (the last two
of these can be verified by differentiation), and differentiation of (7) gives
dw/dp = - [ £ - ( l - p 2 ) K ] 2 / w K 2 p ( l - p 2 ) < 0, and so the total derivative of A0
along the curve Az = 0 is negative as required.

We conclude with some speculation on the question of stability. Recalling the
minimax argument given earlier we observe that the elasticae obtained by that
argument are in natural one-to-one correspondence with the elasticae of the main
theorem; specifically, n is the smaller of p, q and m = p + q. Since the minimax
critical points are unstable, we are led to the following.

CONJECTURE. The circle is the only stable closed elastica in R3.

In particular, this implies that a knotted wire cannot rest in stable equilibrium
without points of self-contact. One might ask what actually happens when a knot is
formed in a piece of springy wire (the ends joined together smoothly). Experiments
produce some very 'canonical'-looking space curves with impressive symmetry (for
example, the figure-eight knot or the Chinese button knot). Invariably, points of self-
contact are indeed observed. In fact, it is tempting to conjecture that there must be at
least three such points (counting multiplicity) in a knotted wire.

APPENDIX

The key to successfully differentiating A0 lies in combining terms in the correct
order. Failure to do this leads to the creation of high-degree polynomials, which
ultimately can be factored but not easily. We illustrate this by computing dA6/dp;
the other partial derivative is computed in a similar fashion.

Observing that 1 — U2 sin2 cf> = /?2, we have

| - A 0 = KQ^\ogKQ + 7r|-A0(4>,
dp op dp

2p

T2

2(£- t / 2 s in 2 0K)~ |d0

0 J^P'

From formula (9) one can compute the derivative of <j>, yielding
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d(f) K(l + w 2 -3p 2 )
T~ = VTT2 V2 • T n e coefficient of E is the sum of three terms:
up X U i

2VXP 2VX{l-p2 + w2){p2 + w2-l) 2K( l+w 2 -3p 2 )

U2p2 + j9w2y4C/2 + fSXU2Y2 "

The first two terms combine to yield AXV/fiU2 Y2. When combined with the
third term, this gives the coefficient of E as

+ 3w2-5p2) 2wV{l + 3w2-5p2)

PU2Y2X pU2XZ "

The coefficient of K is the sum of seven terms. The first, second, and fifth terms
sum to

p2XY2

The third, fourth, sixth and seventh terms combine to give

-4p2VX(p2 + w2 -\){\-p2 + w2)

Pw2Y6 "

These two terms add up to 2wV(3p2 — 3w2 — l)/pXZ. Thus we have

dp pU2XZ
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